Implicit Solvent Methods and DFT+U

CP2K User Tutorial: "Computational Spectroscopy“, Uni Paderborn, 28 August 2018
DFT+U
Local density approximation (LDA)

- Plain DFT (LDA, GGA) performs unexpectedly well for many solid state systems

- But:
 - LDA provides a poor description of the Coulomb interaction
 - The LDA functional is derived from a weakly correlated reference system, the jellium model (uniform or homogeneous electron gas)
 - Generalised Gradient Approximation (GGA) does not overcome these shortcomings as it is still a “local” approximation by adding only gradient information
 - Fortuitous error cancellation obscures the deficiencies
 - LDA fails badly for *strongly correlated systems* like transition metal (TM) oxides and heavy fermion materials with partially filled 4f and 5f orbitals
Hubbard bands form as an effect of the electronic correlation:
- LDA bands split into two sets of bands separated by a local Coulomb repulsion U and band width $W \rightarrow$ Mott insulator

![Diagram showing the transition from metal to (Mott) insulator with U/W ratio.

0 metal U/W (Mott) insulator ∞]
Though it is possible to calculate the Hubbard parameter U using linear response theory*, it is usually treated as an empirical fitting parameter.

Fixed U parameter does not adapt to the chemical environment (e.g. change of oxidation state).

Occurrence of meta-stable states for heavy fermion materials like CeO$_2$, UO$_2$ etc. ⇒ major obstacle technically.

On-going development, e.g. dynamical mean field theory (LDA+DMFT)

– However, such methods are computationally very expensive.

– Accessible model system sizes are quite limited currently (\approx 30 atoms per cell).

– Analytical energy gradients, i.e. atomic forces, are not straightforwardly available.

*Cococcioni and Gironcoli, Phys. Rev. B 71, 035105
• Hubbard correction term is added to the DFT energy functional as an atomic on-site term (V. I. Anisimov et al., Phys. Rev. B 44, 943 (1991))

• Explicit correction that acts as an energy penalty function, e.g. Dudarev*:

\[E_U = \frac{U_{\text{eff}}}{2} \sum_{\sigma,I} \text{Tr}[n^{\sigma,I}(1 - n^{\sigma,I})] \] with atom \(I \) and spin \(\sigma \)

• Computationally cheap

• Right physical effect

• Rotationally invariant

• Effective \(U \) parameter:

\[U_{\text{eff}} = U - J \]

*Dudarev et al., Phil. Mag. B 75, 613 (1997)
Population analyses

• Orbital based methods:
 – Chirgwin and Coulson: \(P = \frac{1}{2}(DS + SD) \)
 – Mulliken: \(P = DS \)
 – Löwdin: \(P = S^{1/2}DS^{1/2} \)

 with density matrix \(D \), overlap matrix \(S \), and occupation matrix \(P \)

• Partitioning of the electronic density:
 – Bader charges: Gradient of the electronic charge density (zero-flux surface)
 – Hirshfeld charges: Difference to unrelaxed atomic densities (pro-density)

• Potential derived charges methods

• Moment derived charges
Tackling the meta-stable state problem

- **Occupation matrix control (OMC)**

- **U ramping method**

- **Quasi-annealing (QA) method**

- **Controlled symmetry reduction (CSR) method**

- **f occupation smearing and U ramping (FOUR)**

- **Local electronic minima inhibition by averaging occupations (LEMIAO)**
Example: Uranium dioxide (UO$_2$)
• Antiferromagnetic ground state below 30.4 K:

```plaintext
&FORCE_EVAL
  METHOD Quickstep
  STRESS_TENSOR analytical
&DFT
  CHARGE 0
  LSD
  MULTIPLICITY 1
  PLUS_U_METHOD Mulliken
  . . .
&END DFT
  . . .
&END FORCE_EVAL
```
Example: Uranium dioxide (UO_2)

- All-electron configuration of uranium: 92 electrons
 \[1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6\ 5d^{10}\ 6s^2\ 6p^6\ 5f^3\ 6d^1\ 7s^2\]

- 86 core electrons:
 \[1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6\ 5d^{10}\ 6s^2\ 6p^6\]

- 6 valence electrons:
 \[5f^3\ 6d^1\ 7s^2\]
Example: Uranium dioxide (UO$_2$)

- All-electron configuration of uranium: 92 electrons

 \[1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6 \ 5d^{10} \ 6s^2 \ 6p^6 \ 5f^3 \ 6d^1 \ 7s^2\]

- 86 core electrons:

 \[1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6 \ 5d^{10} \ 6s^2 \ 6p^6\]

- 6 valence electrons:

 \[5f^3 \ 6d^1 \ 7s^2\]
• All-electron configuration of uranium: 92 electrons
\[1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6 \ 5d^{10} \ 6s^2 \ 6p^6 \ 5f^3 \ 6d^1 \ 7s^2 \]

• 86 core electrons:
\[1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6 \ 5d^{10} \ 6s^2 \ 6p^6 \]

• 6 valence electrons:
\[5f^3 \ 6d^1 \ 7s^2 \]
Example: Uranium dioxide (UO$_2$)

- All-electron configuration of oxygen: 8 electrons

 $1s^2 \ 2s^2 \ 2p^4$

- 2 core electrons:

 $1s^2$

- 6 valence electrons:

 $2s^2 \ 2p^4$
Example: Uranium dioxide (UO$_2$)

- All-electron configuration of oxygen: 8 electrons
 \[1s^2 \ 2s^2 \ 2p^4\]
- 2 core electrons:
 \[1s^2\]
- 6 valence electrons:
 \[2s^2 \ 2p^4\]
Example: Uranium dioxide (UO$_2$)

- All-electron configuration of oxygen: 8 electrons
 \[1s^2 \ 2s^2 \ 2p^4\]
- 2 core electrons:
 \[1s^2\]
- 6 valence electrons:
 \[2s^2 \ 2p^4\]
Example: Uranium dioxide (UO$_2$)

- All-electron configuration of oxygen: 8 electrons
 \[1s^2 \ 2s^2 \ 2p^4 \]

- Pseudo atom configuration of oxygen: 2 + 6 electrons
 \[\text{[He]} \ 2s^2 \ 2p^4 \]
Example: Uranium dioxide (UO_2)

- All-electron configuration of uranium: 92 electrons

 \[
 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6 \ 5d^{10} \ 6s^2 \ 6p^6 \\
 7s^2 \ 5f^3 \ 6d^1
 \]

- Large-core pseudo atom configuration of uranium: 86 + 6 electrons

 \[\text{[Rn]} \ 7s^2 \ 5f^3 \ 6d^1\]

- Medium-core pseudo atom configuration of uranium: 78 + 14 electrons

 \[\text{[Xe]} \ 4f^{14} \ 5d^{10} \] \ 6s^2 \ 6p^6 \ 7s^2 \ 5f^3 \ 6d^1

- Small-core pseudo atom configuration of uranium: 60 + 32 electrons

 \[\text{[Kr]} \ 4d^{10} \ 4f^{14} \] \ 5s^2 \ 5p^6 \ 5d^{10} \ 6s^2 \ 6p^6 \ 7s^2 \ 5f^3 \ 6d^1

Example: Uranium dioxide (UO_2)
DFT+U section in the atomic kind section

&KIND 0
 BASIS_SET DZVP-MOLOPT-SR-GTH-q6
 POTENTIAL GTH-PBE-q6
&BS
 ...
&END BS
! Not needed for O
&END KIND
DFT+U section in the atomic kind section

&KIND Ua
 BASIS_SET DZVP-MOLOPT-GTH-q14
 ELEMENT U
 POTENTIAL GTH-PBE-q14
&BS

&END BS
&DFT_PLUS_U on
 L 3
 U_MINUS_J [eV] 2.00
&ENFORCE_OCCUPATION on/off

&END ENFORCE_OCCUPATION
&END DFT_PLUS_U
&END KIND
Example: Uranium dioxide (UO$_2$)

- Electronic configuration of U$^{4+}$:

 $1s^2 \, 2s^2 \, 2p^6 \, 3s^2 \, 3p^6 \, 3d^{10} \, 4s^2 \, 4p^6 \, 4d^{10} \, 4f^{14} \, 5s^2 \, 5p^6 \, 5d^{10} \, 6s^2 \, 6p^6 \, 5f^2$

- Medium-core pseudo atom configuration of U$^{4+}$:

 $[\text{Xe} \, 4f^{14} \, 5d^{10}] \, 6s^2 \, 6p^6 \, 5f^2$

- Electronic configuration of O$^{2-}$:

 $1s^2 \, 2s^2 \, 2p^6$

- Pseudo atom configuration of O$^{2-}$:

 $[\text{He}] \, 2s^2 \, 2p^6$
• Set up the (on-site) atomic orbital occupations for O^{2-}:

\[
O^+ \rightarrow O^{2-} \\
2p^4 \rightarrow 2p^6
\]

• BS section input is not processed quite intuitively:

```plaintext
&BS
&ALPHA
  N  2 ! 2
  L  1 ! p
  NEL +2 ! (4 + 2)/2 = 3 alpha 2p electrons
&END ALPHA
&BETA
  N  2 ! 2
  L  1 ! p
  NEL +2 ! (4 + 2)/2 = 3 beta 2p electrons
&END BETA
&END BS
```
BS section: Initial atomic orbital occupations

- Set up the (on-site) atomic orbital occupations for U^{4+}:

$$U \rightarrow U^{4+}$$

$$5f^3 \ 6d^1 \ 7s^2 \ \rightarrow \ \ 5f^2$$

- On-site triplet state for U^{4+} for the spin-up (alpha) uranium atoms U_a and swap &ALPHA and &BETA sections for the spin-down (beta) U_b kind (not shown):

```shell
&BS
&ALPHA
  N  5  6  7
  L  3  2  0
  NEL  +1  -1  -2 ! (3 + 1)/2 = 2 alpha 5f electrons
&END ALPHA
&BETA
  N  5  6  7
  L  3  2  0
  NEL  -3  -1  -2 ! remove all beta valence electrons
&END BETA
&END BS
```
Example: Uranium dioxide (UO$_2$)

- Two alpha electrons in seven 5f orbitals: $\binom{7}{2} = 21$ combinations

<table>
<thead>
<tr>
<th></th>
<th>f_{-3}</th>
<th>f_{-2}</th>
<th>f_{-1}</th>
<th>f_0</th>
<th>f_{+1}</th>
<th>f_{+2}</th>
<th>f_{+3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>↑</td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
</tbody>
</table>
Print occupation of each atom with a U value greater zero:

&GLOBAL
 PRINT_LEVEL medium
 . . .
&END GLOBAL

&FORCE_EVAL
 . . .
&DFT
 . . .
&PRINT
 &PLUS_U on
 &EACH
 QS_SCF 1
 &END EACH
 &END PLUS_U
 &END PRINT
 . . .
&END DFT
 . . .
&END FORCE_EVAL
• Use a tiny U value to trigger printout for the $U = 0$ case:

```
&DFT_PLUS_U
   ...
   U_MINUS_J [eV] 2.00E-20
   ...
&END DFT_PLUS_U
```
• A specific (initial) orbital occupation can be enforced:

&DFT_PLUS_U

 &ENFORCE_OCCUPATION on/off

 EPS_SCF 1.0E-5 ! Enforce until a certain SCF convergence is reached
 MAX_SCF 20 ! Enforce occupation for first 20 SCF iterations

 ORBITALS -3 -2 -1 +0 +1 +2 +3 ! Smear f electrons over all f orbitals

 SMEAR on

 &END ENFORCE_OCCUPATION

 &END DFT_PLUS_U

• Alternatively, define and enforce a specific orbital occupation pattern, e.g.

 ORBITALS -3 -1
Example: XAFS spectra simulation
Implicit Solvent Methods
Modelling of solvation effects

- Vacuum
- Gas phase
- Explicit solvent with solute
Modelling of solvation effects

- Vacuum
- Gas phase
- Explicit solvent with solute
- Implicit solvent with solute
Continuum solvation models

- Polarisable continuum model (PCM, Tomasi et al.)
- Conductor-like screening model (COSMO, Klamt et al.)
- Smooth dielectric models are needed for molecular dynamics (MD) simulations
Modelling of solvation effects

- Vacuum
- Gas phase
- Explicit solvent with solute
- Implicit solvent with solute
Modelling of solvation effects

- Vacuum
- Gas phase
- Explicit solvent with solute
- Implicit solvent with solute
- Smoothed solute-solvent transition
Pros and Cons of an implicit solvent approach

• Explicit solute-solvent interactions are missing
 – Pros:
 ▪ Shortcomings of standard DFT in the description of van der Waals and hydrogen bonds w.r.t. the solvent do not matter
 ▪ Shorter sampling times needed to obtain meaningful thermodynamic averages
 – Cons:
 ▪ No detailed description of hydrogen bonds (network)
 ▪ Potential (chemical) reactions between solvent and solute are excluded a priori

• No explicit solvent atoms
 – Pros:
 ▪ Significant reduction in problem size especially for localised basis set methods
 ▪ More efficient sampling
 – Cons:
 ▪ Additional (nested) convergence cycle for polarisation charge required
 ▪ No information about solvation shells (detailed feedback of the solvent)
 ▪ Potentially more noisy forces due to finite differences approach
Smoothened dielectric function

• Dielectric as a smoothed self-consistent function of the electronic density:

\[\epsilon(\mathbf{r}) \equiv \epsilon[\rho^{\text{elec}}(\mathbf{r})] = \begin{cases} 1 & \text{large } \rho^{\text{elec}} \\ \epsilon_0 & \rho^{\text{elec}} \to 0 \end{cases} \]

• Adding a dielectric medium to the system

\[\epsilon(\mathbf{r}) \equiv \epsilon[\rho^{\text{elec}}(\mathbf{r})] \]

\[\nabla^2 \phi^{\text{tot}}(\mathbf{r}) = -4\pi \rho^{\text{solute}}(\mathbf{r}) \quad \text{with} \quad \rho^{\text{solute}}(\mathbf{r}) = \rho^{\text{ions}}(\mathbf{r}) + \rho^{\text{elec}}(\mathbf{r}) \]

\[\nabla \cdot \epsilon[\rho^{\text{elec}}(\mathbf{r})] \phi^{\text{tot}}(\mathbf{r}) = -4\pi \rho^{\text{solute}}(\mathbf{r}) \]

\[\nabla \cdot \mathbf{E}(\mathbf{r}) = 4\pi \rho^{\text{solute}}(\mathbf{r}) - 4\pi \cdot \mathbf{P}(\mathbf{r}) \]

\[\rho^{\text{pol}}(\mathbf{r}) = -\nabla \cdot \mathbf{P}(\mathbf{r}) = \nabla \cdot \left(\frac{\epsilon(\rho^{\text{elec}}(\mathbf{r})) - 1}{4\pi} \nabla \phi^{\text{tot}}(\mathbf{r}) \right) \]

• Finally a vacuum-like Poisson problem is recovered

\[\nabla^2 \phi^{\text{tot}}(\mathbf{r}) = -4\pi \left(\rho^{\text{solute}}(\mathbf{r}) + \rho^{\text{pol}}(\mathbf{r}) \right) \]
• Vacuum-like Poisson problem is recovered

\[\nabla^2 \phi^{\text{tot}}(r) = -4\pi (\rho^{\text{solute}}(r) + \rho^{\text{pol}}(r)) \]

• Energy term

\[E^{\text{el}} = E^{\text{solute}} + E^{\text{pol}} \]
Solvation free energy

\[\Delta G_{\text{sol}} = \Delta G_{\text{el}} + G_{\text{rep}} + G_{\text{dis}} + G_{\text{cav}} + \Delta G_{\text{tm}} + P\Delta V \]

- Electrostatic contribution:
 \[\Delta G_{\text{el}} = G_{\text{el}} - G^0 \]
 with the energy \(G^0 \) of the solute in vacuum

- Repulsion term*:
 \[G_{\text{rep}} = \alpha S \]
 where \(S \) is the (quantum) surface of the cavity

- Dispersion term*:
 \[G_{\text{dis}} = \beta V \]
 where \(V \) is the (quantum) volume of the cavity

• Cavitation term*:

\[G^{\text{cav}} = \gamma S \]

where \(S \) is the (quantum) surface of the cavity

• Thermal motion term \(G^{\text{tm}} \) and the volume change term \(P\Delta V \) are often ignored

• Collecting all terms results in an approximation for the solvation free energy

\[\Delta G^{\text{sol}} \approx \Delta G^{\text{el}}(\epsilon_0, \rho_{\text{min}}, \rho_{\text{max}}) + (\alpha + \gamma) S + \beta V \]

• Quantum volume \(V \) and surface \(S \):

&SCCS on/off
 ALPHA [N*m^-1] 0.0
 BETA [kbar] 0.0
 DELTA_RHO 2.0E-5
 DERIVATIVE_METHOD cd3/cd5/cd7/fft
 DIELECTRIC_CONSTANT 78.36
 EPS_SCCS 1.0E-6
 GAMMA [mN/m] 0.0
@IF ${OT}
 EPS_SCF 0.03
@ENDIF
@IF ${TD}
 EPS_SCF 0.3
@ENDIF
 MAX_ITER 100
 METHOD Andreussi/Fattebert-Gygi
 MIXING 0.6
 . . .
&END SCCS
Dielectric functions

• Fattebert-Gygi

$$\varepsilon[\rho^{\text{elec}}(\mathbf{r})] = 1 + \frac{\varepsilon_0 - 1}{2} \left(1 + \frac{1 - (\rho^{\text{elec}}/\rho_0)^{2\beta}}{1 + (\rho^{\text{elec}}/\rho_0)^{2\beta}} \right)$$

• Andreussi et al.

$$\varepsilon[\rho^{\text{elec}}(\mathbf{r})] = \begin{cases} 1 & \rho^{\text{elec}} > \rho_{\text{max}} \\ \exp\left(t(\ln \rho^{\text{elec}})\right) & \rho_{\text{min}} < \rho^{\text{elec}} < \rho_{\text{max}} \\ \varepsilon_0 & \rho^{\text{elec}} < \rho_{\text{min}} \end{cases}$$

$$t(x) = \frac{\ln \varepsilon_0}{2\pi} \left[2\pi \frac{\ln \rho_{\text{max}} - x}{\ln \rho_{\text{max}} - \ln \rho_{\text{min}}} - \sin \left(2\pi \frac{\ln \rho_{\text{max}} - x}{\ln \rho_{\text{max}} - \ln \rho_{\text{min}}} \right) \right]$$
Smoothing methods for the dielectric function

&SCCS on/off

. . .
DIELECTRIC_CONSTANT 78.36
METHOD Andreussi/Fattebert-Gygi

. . .
&ANDREUSSI
 RHO_MAX 0.001
 RHO_MIN 0.0001
&END ANDREUSSI

. . .
&FATTEBERT-GYGI
 BETA 1.3
 RHO_ZERO 0.0004
&END FATTEBERT-GYGI

. . .
&END SCCS
Questions or comments?