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The Virtual Chemistry Lab

,,1' he most important hypothesis in
all of biology, chemistry and physics
is that everything is made of atoms,
and that everything living things do
can be understood in terms of the

jigglings and wigglings of atoms™




Liquid Water

Quantum mechanical description is essential



Liquid Water

Dynamics is indispensable



Liquid Water

Dynamics & QM on large length and time scales



chrodinger Equation

Grwin Schrodinger
*12.VIIL . 188 + 4.1.1361

Annemarie dchrsdinger
* 31.X11.1836 + 3 X.I365




Schrodinger Equation

,The fundamental laws necessary for
the mathematical treatment of large
parts of physics and the whole of

4

chemistry are thus fully known ...

H(r, R)¥(r,R) = E¥(r, R)




Schrodinger Equation

... the difficulty lies only in the
fact that application of these laws
leads to equations that are too
complex to be solved"




Schrodinger Equat

... hence it would be desirable to devel

101

op

practical approximation schemes for t

application of quantum mechanics™

1€



Schrodinger Equation

»LAny attempt to use mathematical
methods for the investigation of chemical
questions must be considered as
completely irrational and is strongly
opposing the spirit of chemistry. If
mathematics will ever occupy a

prominent place in chemistry - an absurd
idea that fortunately is completely

unrealistic - this would lead to a rapid ISIIOrS Mare Augusie
Francgois Xavier Comte
and irreversible decay of this scientific (1798-1857)

discipline*”



Born-Oppenheimer
H(r,R)¥(r,R) = E¥(r,R), mit

H(I‘ R) 1. —|—TK—|—Vee —I—VeKI'R —I—VKK

M; ~ 1836m. {-} i-...—'




Born-Oppenheimer

H(r,R) = H.(r; R) + Hx(R) & Vi, x(R) >> Vg ¢(r; R)

Me(ri R)U(riR) _ p He(RIX(R) _ oy

Y(r; R) X(R)

He(r; R)Y(r; R) = e(R)Y(7r; R)

Hr(R) +e(R)|x(R) = Ex(R)



Born-Oppenheimer

H(r,R) = H.(r; R) + Hx(R) & Vi, x(R) >> Vg ¢(r; R)

Me(ri R)U(riR) _ p He(RIX(R) _ oy

Y(r; R) X(R)

e(R) + Vi (R) = )_;vi(Rr) + 2. yv2(Rr, Ry) + ...

MiR; = —VRg, [e(R) + Vkk (R)]



Nucleil

Born-Oppenheimer

Electrons

Molecular Dynamics
(MD)

Ab-Initio MD
(AIMD)

Path-Integral MD
(PIMD)

Ab-Initio PIMD
(PI-AIMD)

Classical

Quantum Mechanical

[eoISse[)

YOO\ Wunjuen(d)



Electrons

Ab-Initio MD | £
(AIMD) 9
% &
Z 3
Path-Integral MD |  Ab-Initio PIMD | =
(PIMD) (ALPIMD) ’
@D
=

Classical Quantum Mechanical

e(R) + Vi (R) = )_;vi(Rr) + 2. yv2(Rr, Ry) + ...

MiR; = —VRg, [e(R) + Vkk (R)]



Molecular Dynamics

"for the development of Winners of Nobel Prize in
Chemistry 2013

multiscale models for complex
chemical systems".

* protein folding,
e catalysis,

e electron transfer,
* drug design

° Martin Karplus Michael Levitt Arieh Warshel

Alder, B. J. and Wainwright, T. E. J. Chem. Phys. 27, 1208 (1957)

Alder, B. J. and Wainwright, T. E. J. Chem. Phys. 31, 459 (1959)

Rahman, A. Phys. Rev. A136, 405 (1964)

Stillinger, F. H. and Rahman, A. J. Chem. Phys. 60, 1545 (1974)

McCammon, J. A., Gelin, B. R., and Karplus, M. Nature (Lond.) 267, 585 (1977)
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What MD is NOT!




The Essence of MD

Energy

| Dissociation Energy

Internuclear Separation (7)



The Essence of MD
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\ | Dissociation Energy
_______ .

Energy

Internuclear Separation (7)



Boltzmann Distribution

Tuwo minime cmrqm&ha Ares gives g obdnld:vj
to states A and B of state A or B

e Absolute probability P of a system to be in position x:

U(x)
P(z) =€ *BT /Z

. Potential energy of a system at position x

_ U(=z)
.Z Z - kBT : Partition function, so that Z P(ZIZ) —




Relative Probability

_U(=)

e The calculation of Z = Z - kBT however, is very demanding!

e Analytic determination of Z is generally impossible!

e Fvaluating Z at random points is not accurate enough!
e Approximating Z at nuclear ground-state only valid for T=0 K!
e Calculation of P(x) by MD/MC requires unlimited computer time!

e Computing rel. probagi(iit)y IS easy: I Tuo points at x; and =y
P(ajz) — 6_ kp T /Z Y i
s ¥ J
B T | -
P(zj) = e &7 /2 = N
P(x;) o T ‘ -
P(x;)



The Essence of MD
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\ | Dissociation Energy
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Energy

Internuclear Separation (7)



The Essence of MD
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\ | Dissociation Energy
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Energy

Internuclear Separation (7)



Importance Sampling

e Till now we were selecting our configurations from a uniform

distribution and weight the configurations a posterior: by means

of the relative Boltzmann probability P(x;) _ U(“"Z;bg(“’ﬂ

P(z;)

e Instead, we would like to sample a prior: from the Boltzmann

distribution and weight the configurations equally, i.e.

U(x)
p(x) o« e FBT

<A> — lim _sz

L—oo I,

* But how? Since knowing the whole ,O(CE ) corresponds to know Z!



Metropolis Monte Carlo

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicHoLAs METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N, ROSENBLUTH, AND AUuGUsTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpwArD TELLER,* Depariment of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION II. THE GENERAL METHOD FOR AN ARBITRARY

; ] ; POTENTIAL BETWEEN THE PARTICLES
y I ‘HE purpose of this paper is to describe a general) | . .
method, suitable for fast electronic computing In order to reduce the problem to a feasible size for
machines, of calculating the properties of any substance | numerical work_, we can, of course, consider only a.ﬁnite
which may be considered as composed of nteracting number of particles. This number V may be as high as

individual molecules. Classical statistics is assumed,/ Several hundred. Our system consists of a squaref con-

" 1 -




Molecular Dynamics

Time evolution of a classical many-body system in a potential

L(R,R) =T(R) - = 5 Z MR} — ®({R:})

Euler-Lagrange equation

d 8[, 0L
Equation of motion
. d
vk, — _OPURD o

OR;



Molecular Dynamics




What we are interested in?

® Thermodynamic ensemble properties: , ..

Function Hamlltoman
Static equilibrium properties: Jd?’NR/d?’Np e kBT A(p, R)
Dynamic properties:(A(0)B(t)) = ;/d?’NR d3N e~ /BT A(p B(p(t), R(t))
R2

Ri

Energy



What we are interested in?

® Ergodic hypothesis: ensemble average equal to time average
<A> _ %/dSNR/dSNp e_H/kBTA(p, R)

AOB®) =5 [ VR [ @¥p e M Ap(0), RO)Bo(2), R(t)

R>

Ri

Energy



What we are interested in?

® Ergodic hypothesis: ensemble average equal to time average

T
)= 7 [ arawe). 7))

T
(A(0)B(t)) = —/O dt' A(t"YB(t +t')

R
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Integrating Newton’s EOM

(Ri,P1)
(R3, P3)

1. Assign initial R (positions) and p (momenta)

(R2, p2)
-



Integrating Newton’'s EOM

(Ri,P1)

1. Assign initial R (positions) and p (momenta)

(R2, p2)

(R3, P3) 2. Evolve (numerically) Newton's equations of

U motion for a discrete time increment (requires
evaluation of the forces)
[ 2
Py
H(R, = - V(R
(R, p) o0, (R)

Potential

)y = ——— = —V(VIR) = MR = R;=p;/M
PI= "R, ) MR, =€) 1=P1/M;

Force




Integrating Newton’'s EOM

(Ri, p1) 1. Assign initial R (positions) and p (momenta)

(R2, p2)
| (Rs, p3) 2. Evolve (numerically) Newton's equations of
U motion for a discrete time increment (requires
evaluation of the forces)
- p2
H(R,p) = — + V(R
(R, p) oar T VR

Potential

(R (t+dt), pi(t+dt))

(Ry(t+dt),
pz(t+dt))/‘u 3. Assign new positions and momenta

(R3(t+dt), p3(t+dt))



Integrating Newton’'s EOM

(Ri, 1) 1. Assign initial R (positions) and p (momenta)
(R2, p2)
(R, Ps3) 2. Evolve (numerically) Newton's equations of
U motion for a discrete time increment (requires
evaluation of the forces)

H(R,p) = P} - V(R)

Potential

5 = —:—V(V)(I‘{ ~ MR
Pr IR, vy =

(R\(t+dt), pi(t+dt))

(R2(t+dt),
Pz(t+dt))‘u 3. Assign new positions and momenta

(R3(t+dt), p3(t+dt))




Verlet’s Algorithm

* First shot: Taylor expansion of R

Force

R(t+ At) = R(t) 4 pfr? At :At2+R(t) Aj - O(AY)




Verlet’s Algorithm

* First shot: Taylor expansion of R

Force Error O(AP)

/ VAN A
R(t + At) = R(t) - pqsl) At IAt2 +q%et53—f|r6(—ﬁrt4ﬁ—

e Simple truncation of the Taylor expansion is a bad idea

e The naive forward Euler” algorithm is

* not time reversible
e does not conserve phase space volume
* does not conserve energy

e Use Verlet’s algorithm instead



Verlet’s Algorithm

* First shot: Taylor expansion of R

Force

R(t + At) = pT(ri At ‘At2+R -O(AtY)
R(t — At) = R(t) pfr?m' ;ﬂzAtQ Rt )Aj -O(AtY) +

R(t + At) + R(t — At) — QR(t) | pfri) At? Error

R(t + At) ~ 2R(t) - R(t — At) + LU A2

m

Verlet Algorithm



Velocity-Verlet Algorithm

At?
2M

R;(t+ At) = R;(t) + At x Ry(t) - Fi(t)

Calculate F;(t + At)

At
2M7

Ri(t 4+ At) = Ry (¢) - [Fr(t) + Fr(t + At)]

@ Simple and efficient: Only F(t), no higher derivatives required
@ Explicitly time reversible
@ Symplectic, i.e. conserves phase space volume

Excellent long time stability = Energy conservation



LLiouville Formalism

@ Define phase space vector I' = (R, P) and commutator

0A0H 0AOH
OROP OP OR

@ Hamilton’s equations of motion

AT
= =T ) =
—={T, "} =0

{AvH} —

@ Define propagator £ such that
LT = {T,H}
@ Symplectic algorithmviaT' = 0 =

T(t) = “£T(0)



Lyapunov Instability

@ It’s impossible to determine initial conditions: AR x AP ~ h
@ Finite numerical accuracy of the integrator as well as ¢(R)

@ Even worse: The Lyapunov instability
R(t) — R'(t)| ~ € x et
suggests an exponential dependence on them

@ l.e. even knowing ®(R) exactly still causes an e** divergence

Neither possible nor desirable to calculate exact trajectories



Molecular Dynamics

* Microcanonical (NVE) ensemble: Number of particles,Volume,
and total Energy are conserved

* Natural ensemble to simulate molecular dynamics (follows
directly from Hamilton’s equation of motion



Molecular Dynamics

* Microcanonical (NVE) ensemble: Number of particles,Volume,
and total Energy are conserved

* Natural ensemble to simulate molecular dynamics (follows
directly from Hamilton’s equation of motion

e Canonical (NVT) ensemble: Number of particles,Volume, and
Temperature are conserved

* System in contact with a heat bath (discussed later on)



The Canonical Ensemble

e The idea: couple the system to a thermostat (heat bath)
e Interesting because:
e Experiments are usually done at constant temperature

e Better modeling of conformational changes

Energy is
conserved

Energy is
not conserved




Maxwell Distribution

Probability distribution of the kinetic energy:
P(Ekm) X eXp(_Ekin/kBT)

Probability (a.u.)
]#i |

I ' I '
Maxwell-Boltzmann-Distribution

< <71

Kinetic Energy (a.u.)

()

kinetic
energy: p%/2M

3Nkg

f

# of particles




Thermostats: First Ideas

® Temperature rescaling: Berendsen “thermostat”

® Rescale velocities by a factor containing the ratio of target and
Instant temperature

® Does not sample the canonical ensemble (wrong temperature
distribution)

® “Flying ice-cube” effect: rotations and translations acquire high Exin

and vibrations are frozen
H.]. C. Berendsen, et al. |. Chem. Phys. 81 3684 (1984)



Thermostats: First Ideas

® Temperature rescaling: Berendsen “thermostat”

® Rescale velocities by a factor containing the ratio of target and
Instant temperature

® Does not sample the canonical ensemble (wrong temperature
distribution)

® “Flying ice-cube” effect: rotations and translations acquire high Exin

and vibrations are frozen
H.]. C. Berendsen, et al. |. Chem. Phys. 81 3684 (1984)

® Simple stochastic idea: Andersen thermostat

® At each n' time-step, replace velocity of a random particle by one
drawn from a Maxwell-Boltzmann distribution at target
temperature

® Not very efficient, no conserved quantity

® Very sensitive on n H. C.Andersen, J. Chem. Phys. 72,2384 (1980)



Stochastic Velocity Rescaling

G. Bussi, D. Donadio, and M. Parrinello, . Chem. Phys. 126,014101 (2007).

Combine concepts from velocity rescaling (fast!) with
concepts from stochastic thermostats (accurate!)

Target temperature follows a stochastic differential equation:

Temperature White noise
rescaling



Stochastic Velocity Rescaling

G. Bussi, D. Donadio, and M. Parrinello, . Chem. Phys. 126,014101 (2007).

Combine concepts from velocity rescaling (fast!) with
concepts from stochastic thermostats (accurate!)

Target temperature follows a stochastic differential equation:

Temperature White noise
rescaling

® Very successful thermostat, weakly dependent on relaxation time T

® Pseudo-Hamiltonian is conserved

Bussi, Parrinello, Phys. Rev. E 75,056707 (2007)



Newton vs. Langevin

Heavy(er) body in a solvent (or gas)

Newtonian dynamics _angevin dynamics

O O

Fr=—-VR,V Fr=
friction random

force



Newton vs. Langevin

Heavy(er) body in a solvent (or gas)

Newtonian dynamics _angevin dynamics

O O

Fr=—-VR,V Fr=
friction random

force

® |n thermal equilibrium, drag of the friction and kicks of the random
noise balance each other - Fluctuation Dissipation Theorem (FDT)

(&§(1)€(0)) = 2kpTo(t)

No memory of past times
No frequency dependence (white noise)



Langevin Thermostat

S.A.Adelman and J. D. Doll, J. Chem. Phys. 64,2375 (1976).

Model dynamics via the Langevin equation:

R0

Original system Friction and White Noise

(£(t)€(0)) = 2kpTvi(t)



Langevin Thermostat

S.A.Adelman and ). D. Doll, J. Chem. Phys. 64,2375 (1976).

Model dynamics via the Langevin equation:

R0

Original system Friction and White Noise

(£(t)€(0)) = 2kpTvi(t)

® Sensitive on Y

® For systems spanning a wide range of frequencies, how to
achieve the “best” critical damping?

® Disturbs dynamics considerably



Colored Noise Thermostat

M. Ceriotti, G. Bussi, M. Parrinello, JCTC 2010, 6, | 170-1180 (http://gle4md.org/index.html)

Extremely flexible class of thermostats based on the
Generalized Langevin Equation (GLE)

® Markovian (no memory) process in high dimensions

>+BNQ

~ €xtra Original system  Friction and White Noise
fictitious degrees

of freedom




Colored Noise Thermostat

M. Ceriotti, G. Bussi, M. Parrinello, JCTC 2010, 6, | 70-1180 (http://gle4md.org/index.html)

Extremely flexible class of thermostats based on the
Generalized Langevin Equation (GLE)

® Markovian (ho memory) process in high dimensions

D p
= A, (S) +B, (£)
extra Original system  Friction and White Noise
fictitious degrees
of freedom

® Non-Markovian process for the system (integrating out s):

p:F—/;d(T) +

Memory Kernel Colored Noise

Fluctuation Dissipation: H (1) = ({(¢)((0)) = kT K (t)



Colored Noise Thermostat

M. Ceriotti, G. Bussi, M. Parrinello, JCTC 2010, 6, 1 170-1180 (http://gle4md.berlios.de/)

® Input matrices A, (and Cp), connected by:

T T
A,C,+C,Al =B,B!
\covariance
matrix

® However, flexible:
® For canonical sampling, Cp = lkgT and FDT is obeyed
® For other samplings one can break FDT

® What can you model?

® Nuclear quantum effects, excitation of single modes

® Make “Path Integral Molecular Dynamics” computationally
cheaper Ceriotti, Manolopoulos, Parinello, JCP 134, 084104 (2011)



Molecular Dynamics

* Microcanonical (NVE) ensemble: Number of particles,Volume,
and total Energy are conserved

* Natural ensemble to simulate molecular dynamics (follows
directly from Hamilton’s equation of motion

e Canonical (NVT) ensemble: Number of particles,Volume, and
Temperature are conserved

e System in contact with a heat bath (discussed later on)

* |sothermic-Isobaric (NPT) ensemble: Number of particles,
Pressure, and Temperature are conserved



Isobaric-Isothermic MD

® Definition of instantaneous pressure:

2 L o
P = W(Ekin o :‘) — = ZRij(vRij U) — _V@
i Stress Tensor
® Similar schemes as thermostats: pressure rescaling, extended
Lagrangian, stochastic pressure rescaling

Parinello and Rahman, |. Appl. Phys 52, 7182 (1981);
Bussi, Zykova-Timan, Parrinello, . Chem. Phys. 130,074101 (2009)

® Use thermostat together with a barostat to control pressure
and temperature




Molecular Dynamics

* Microcanonical (NVE) ensemble: Number of particles,Volume,
and total Energy are conserved

* Natural ensemble to simulate molecular dynamics (follows
directly from Hamilton’s equation of motion

e Canonical (NVT) ensemble: Number of particles,Volume, and
Temperature are conserved

e System in contact with a heat bath (discussed later on)

* |sothermic-Isobaric (NPT) ensemble: Number of particles,
Pressure, and Temperature are conserved

“Computer experiment’: equilibrate system and measure



Molecular Dynamics




Nucleil

Electrons

Molecular Dynamics

—= —

—Initio D

(MD) \_ (AIMD
Path-Integral MD Ab-Initio PIMD
(PIMD) (AI-PIMD)
Classical Quantum Mechanical

He(r; R)Y(r; R) = e(R)Y(7r; R)

MiR; = —VRg, [e(R) + Vkk (R)]

[eoIsser)

YOI\ Wnjuen(d)



Born-Oppenheimer MD

®(R) = EQS"[{vi};R] + Erf(R) = E[{¢i}; R]

Born-Oppenheimer Lagrangian

N
. 1 .
Leo({¥i};R,R) = —§ "MiR; —min E[{1;}; R]
2 {wi) {{apal5) =035}

The forces are obtained by solving the Euler-Lagrange equation

d 0L oL




Born-Oppenheimer MD

MR = —V R, |min E[{%},RI}
_{%‘} {(Wil)=0d:5} |

If and only if (v;| is an eigenfunction, then

oOF

) 9
— Y Aij s (i |
MrRy IR, — 38R1<¢ |¢]>

However, in general the HF-Theorem can not be assumed



0.1 T I

Born-Oppenheimer MD

0.07 |

0007 |-

& Convergenoe, as

o
X
S

used In tesis

. . . ’-.—‘"--.
| Energy correct to machine precision P
A_\\\- ..' -

16"08 R -\."\

1205

. - Standard convergence

16-07 |

RMS error of ionic force
f’

1610 | - ]

ver ol - _. Forces correct to machine precision

le-12 : e L . : : - 1 | . - .
1614 1e-12 1€-10 1e-08 14-06 0.0001 0.01 1

Largest element of electronic gradient

May be good enough to optimize the geometry, but not for AIMD



Born-Oppenheimer MD

BOMD: C,H,

I !

O

-

N
I

“not so” accurate

llllllllll

5=
-
=~
l
A

Total energy [eV]
S -
- -
() (S
| |

lllll

0.01F
accurate

0 0.05 0.1 0.15
Time [ps]



Born-Oppenheimer MD

@ Large integration time steps
@ Potential energy on the BO surface
@ Expensive optimization of the WF required

@ \ery stringent SCF convergence requirement

However: >> 10° electronic structure calculations are required



Car-Parrinello MD

ICTP Photo Archives




Car-Parrinello MD

‘
Lcp({¥i}; R, R) —uZ ili) H - ZMIR2

[{%‘}»R +ZA¢]- (Wiliby) — i)
¥

doc  oc
dt 8RI N OR;

\_ ; 4 oc  oc
1985 Trieste / dt 9| Wil

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)



Car-Parrinello MD

M;R; = —Vr, E[{%}-R} '

(il )=0di5} |
- ZAU aR (ilt;)

papi(r,t) = —5<¢i’ Y Agjlg)
J

= —H (il + ) Aijl95)
j

1985 Tieste /

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)




Car-Parrinello MD

Beside that it circumvent the SCF cycle, what is so clever about it?

@ If 1 is sufficiently small, the electrons adiabatically follow the ions

@ In this case the metastable state can be sustained and ; ~ 0

OF [{¢i}; Ry o
5] zjjAwW—o

@ l.e. on ionic timescales the electron oscillations averages out
= (1;| is an eigenfunction of HSP, thus the HF-Theorem holds

@ Energies & Forces are NOT on the BO surface, but are consistent

\

M
d 1 R O dHep
% {HBO T 5:“ Z:Zl<¢z ‘ ¢z> r = At =0

/




Car-Parrinello MD

Vibrational spectra of electrons and ions do not overlap

r L | l L 1 1 l ) I J ' ) 1 1

40 | -

20 - -

0: M ]

L

0 2000 4000 6000 8000
w (THz)

Triangle = highest ionic frequency

v(w) (arb. units)

Py = [ cos@n) Y (0] ()



Car-Parrinello MD

Vacancy in a hot 64-atom Si cell

0.08 1400

0.08 1300

0.04 { 1200

K, (hartree)

0.02 1100

0.00 \— L L ! 4 L 1000

time (10* atu)



Car-Parrinello MD

64 atoms of molten aluminum
@ (a): Without thermostat
@ (b): With thermostat

0.16 T I I I

0 0.2 04 0.6 0.8 10
t (psec)



Car-Parrinello MD

Principal task of x: Coupling between R; and

Uu(r,t) = o(r,t)] < CV/n

L
Atmax
N

@ 1, acts as a continuous slider between speed and accuracy

@ Typically, the timestep is ~ 5 x —10x smaller than in BOMD

@ Depends on the application if either CPMD or BOMD is to favor

@ Metals are problematic: Finite electron temperature or thermostats

Desirable to eliminate p!



BOMD vs. CPMD

BOMD CPMD
Energy Conservation fair
Iterative Optimization yes
Exactly on the BO-Surface o
Integration time-step small
Metals and small band-gap difficult




Second-Generation CPMD

—VR; |[min £ {vi}; Ry
_{-w?;} {(il)=0:;} |

OF 0
= “OR, ;Asj@—mm | 0;)

M;R;

O(1i] _8E[{¢i}?RIJ _
B QZ OR; O(1i] ;Aijwj)

T. D. Kithne, WIREs Comput. Mol. Sci. 4, 391 (2014)



Second-Generation CPMD

MiR; = —Vg, |min E[{¢;}; R/]
(¥} {(¥i|¥;)=6:; } ]
oF 0
= "R, ;Aij8—m<¢i | Vj)
O(i| | OE[{vi}; Rl e
ot |- e
2 SF d
grltir ) =~ N e g i ) 2 Al )

T. D. Kiihne and E. Prodan, Annals of Physics 391, 120 (2018)



Second-Generation CPMD

0.2 T [ I

ﬂ-fjﬁj = FIBG — “':r'DﬂIj’Rj + E?
N—  —
— FIPC—|— Ej};}

015 =

PE,) [eV']
o
T
|

(EP(0)EP (1)) = 2ypM1kpTi(t)

0.05 ]

T. D. Kiithne, M. Krack, F. Mohamed and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)



econd-Generation CPMD

T v T T T T T
—— BOMD reference

— -864.8 - 1 corrector step =
[}
o "
3 sesff\A | T
T : !
o M ] \J/ [ \ | A ‘..‘ LA { l', R
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T. D. Kiithne, M. Krack, F. Mohamed and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)



T. D. Kiithne, M. Krack, F. Mohamed and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)

d-Generation C
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,On-the-fly* Spectroscopy

wp(r — R) = e V) / dk e’® R Z U)K (1)

20
= 0
=
—20
20
=
-2‘;’ A A A A v . ®
() 0.5 1.0 2500 S 350 (K0
['ime (ps) l

P. Partovi-Azar and T. D. Kiihne, J. Comp. Chem. 36, 2188 (2015)



Nucleil

Electrons

Molecular Dynamics
(MD)

Ab-Initio MD
(AIMD)

ath—Integral
\_ (PIMD *

Ab-Initio PIMD
(AI-PIMD)

Classical

=+ VKK(R) ~ Z[ U1(R[) -+ Z[<J?}2(R[,RJ) -+ ...

Quantum Mechanical

Hi(R) +e(R)|x(R) = Ex(R)

[eo1sser)

YOI\ Wnjuen()



Importance of NQE

® C(lassically the average value of the kinetic energy follows equipartition
(Boltzmann operator factorizes) and is given by
SNEBT

T2

® |n quantum mechanics, Boltzmann operator does not factorize (because

momentum and position do not commute). E.g. for a system of harmonic
oscillators:

(K)

(g = 30 A ot (G ) g
—~ 4\/m; 2,/m; ependence
8.6 PH OF WATER _ .
g.ulE<— CLASSICAL WATER -
8.2/- -
8.0 i
T 78 -
7.6 ® -
7.4 e .
7.2 © i}
70 | . | -
" H20 *Hao *H20 DOH 1 Hg0

1/\/my



Path-Integral MD

Z = T[] = Tt [(e#%)"] , mit 5, — 2

= lim,, oo (ﬁlh)n [d"q | d"p e~ Prntn it

P2 (7) M : : 2 - :

N n I —1 n

Hy=Y0, 3", [ s+ 5 (RY - RY™) ] +55,V (RY, .. RY)
E;S,-Jz?n Harmonic sprin?gg between beads V:(gz

Particle §




Path-Integral MD

* Radius of gyration — the spread in imaginary time. For a tree particle the root mean square

A(T) AT) = \/Qw::lkBT

De Broglie Wavelength ot the particle.

radius of gyration 1s: 5

<7'G(T)>1/2 —

V8T

* Bead to bead

distance. For a free * Centroid: The centre

particle the average i1s: _ of the polymer.

BR”

nm

S——

Note: distance between
beads decreases as number

of beads increases.



Ring-Polymer MD

Path Integral MD uses ring polymer trajectories to estimate static
averages of the form:

1 i -
(A) = ETr[c_"”HA]

However, many important quantities are given by dynamic averages:

Time correlation function
cap(t) = Tr[e_'BH/Al(O)B(t)]

Diffusion coefficient IR spectrum (dipole adsorption cross section)
1 > mw A — Bhw
D(T) = 2 / Cy.v (1) dt n(w)a(w) = Shel co (1—eP")C, (w)
Ve velocity R

L[~
C’/l-/t (w) — o / e_lwt(?ll'l!-(t) dt
2T J —oc Ndipol
ipole

PIMD does NOT give access to real time propagation (inomenta are
fictitious)



Ring-Polymer MD

PIMD does NOT give access to real time propagation.
However, by normal mode transformation of free ring-polymer modes:

N o1l & | ws = 2wy sin(sw/n)
}1 i J 9 S T
0 Z; [ (i m W (qs) } Wiy = 'n,ka/ﬁ,

s=0 = centroid mode; s¥0 = internal modes

Ring polymer molecular dynamics (RPMD) [1]
Masses of the beads are the real masses
Problem: beads frequencies resonate with
physical frequencies High T centroid
Centroid MD (CMD) [2]

Centroid moves in the effective potential
generated by the internal modes of the ring Low T |
Beads have small masses: need for a special /Centro'd

thermostat

Problem: curvature problem

[1] Craig and Manolopoulos, JCP 121,3368 (2004)
[2] Cao and Voth, JCP 100, 5093 (1994)




Nuclei

Electrons

Molecular Dynamics
(MD)

Ab-Initio MD
(AIMD)

Path-Integral MD

— ——

/Ab-Tnitio PIMD\

(PIMD) « (ALI-PIMD)
Classical Quantum Mechanical

He(r; R)Y(r; R) = e(R)Y(7r; R)

Hr(R) +e(R)| x(R) = Ex(R)

[BoISSe])

YOI\ Wnjuen()



Ring Polymer Contraction

0 1000 2000 3000 4000
® [cm'1]



Ring Polymer Contraction

0 1000 2000 3000 4000
® [cm_1]



Ring Polymer Contraction

Bhw =5 at 300 K Bhw = 20 at 300 K

(n > D) (n > 20)

ifémvr is “soft” 17'111;1':—. is “hard

0 1000 2000 3000 4000
0 [cm_1]



Ring Polymer Contraction

(ete.)
Ring polymer contraction: :
W44 = Sﬂ'/ﬁﬁ
q Wig = 'Ei’.u"['/ﬁh
A .
e
T ey _
t';" “. FT mingﬁlﬂ/ﬁﬁ
® o .
.:. -® . - <
. .. f.-*‘ ’:' wy1 =~ 2w /Bh
1 L] @
o
Wp — 0
Z | :L':Lh-]' I:"-{ir.,i' l
g=1
e —— — - = - - - ————

T. E. Markland and D. E. Manolopoulos, J. Chem. Phys. 129, 024105 (2008)



Ring Polymer Contraction

(etc.)

Ring polymer contraction:

W44 = 8’:’1”,/,3.-’1

d; Wyg = 61’1’/‘3?1

-

e —— —
T. E. Markland and D. E. Manolopoulos, J. Chem. Phys. 129, 024105 (2008)



Ring Polymer Contraction

(ete.)
Ring polymer contraction: :
W4qg = Sﬂ'/ﬁﬁ
qj wyig =~ 67 /Bh

T. E. Markland and D. E. Manolopoulos, J. Chem. Phys. 129, 024105 (2008)

— . —



Quantum-RPC

r I N
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PSS My o, (k+1) (k)
=2 S wp(By — B + Vi ({RE))
k=1LI=1

+ i [rmn E[{w"} (R - V5 {R}H};J
[-:1.»1[ '} J

aoft A—potentiod

. Ur 2 -;H [i:+l} (k)
k=1 Li=1
r i
+ 3 2| min E[{w) (BEY - Vi;({RE))
oy 4 {wi<)

e

C. John, T. Spura, S. Habershon and T. D. Kiihne, Phys. Rev. E 93, 043305 (2016)



Water: Quo Vadis DFT”

Soper (A. K. Soper, 2000)
PBE, p=1 i
PBE, p=32
PBE, p=32 —+ 7
PBE, p=32 — 1
TPSS-D3, p=1

TPSS-D3, p=32 — 1

2.0 5.5 6.0

Soper (A. K. Soper, 2000)
PBE, p=1 7
PBE, p=32

PBE, p=32 —+ 7
PBE, p=32 — 1
TPSS-D3, p=1 -

TPSS-D3, p=32 — 1

I
2

C. John, T. Spura, S. Habershon and T. D. Kiihne, Phys. Rev. E 93, 043305 (2016)






