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The Virtual Chemistry Lab



The Virtual Chemistry Lab 



„The most important hypothesis in 
all of biology, chemistry and physics 
is that everything is made of atoms, 
and that everything living things do 
can be understood in terms of the 
jigglings and wigglings of atoms“

The Virtual Chemistry Lab 



Liquid Water

Quantum mechanical description is essential



Liquid Water

Dynamics is indispensable



Liquid Water

Dynamics & QM on large length and time scales



Schrödinger Equation



Schrödinger Equation

„The fundamental laws necessary for 
the mathematical treatment of large 
parts of physics and the whole of 

chemistry are thus fully known ...“

H(r,R)Ψ(r,R) = EΨ(r,R)



Schrödinger Equation

„... the difficulty lies only in the 
fact that application of these laws 

leads to equations that are too 
complex to be solved“



Schrödinger Equation

„... hence it would be desirable to develop 
practical approximation schemes for the 

application of quantum mechanics“



Schrödinger Equation



Born-Oppenheimer

Ψ(r,R) ≈ ψ(r;R)χ(R)

H(r,R) = Te + TK + Vee(r) + VeK(r,R) + VKK(R)

MI ≈ 1836me

H(r,R)Ψ(r,R) = EΨ(r,R),mit



Born-Oppenheimer

He(r;R)ψ(r;R)

ψ(r;R)
= E −

HK(R)χ(R)

χ(R)
= ε(R)

H(r,R) = He(r;R) +HK(R) & ∇2

RI
χ(R) >> ∇2

RI
ψ(r;R)

[HK(R) + ε(R)]χ(R) = Eχ(R)

He(r;R)ψ(r;R) = ε(R)ψ(r;R)



Born-Oppenheimer

He(r;R)ψ(r;R)

ψ(r;R)
= E −

HK(R)χ(R)

χ(R)
= ε(R)

H(r,R) = He(r;R) +HK(R) & ∇2

RI
χ(R) >> ∇2

RI
ψ(r;R)

ε(R) + VKK(R) ≈
∑

I
v1(RI) +

∑
I<J

v2(RI ,RJ) + ...

MIR̈I = −∇RI
[ε(R) + VKK(R)]
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Molecular Dynamics 
(MD)

Ab-Initio MD 
(AIMD)

Path-Integral MD 
(PIMD)

Ab-Initio PIMD 
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What MD is NOT!



The Essence of MD



The Essence of MD



Boltzmann Distribution

• Absolute probability P of a system to be in position x: 

• U(x): Potential energy of a system at position x 
•                       : Partition function, so that

P (x) = e

�U(x)
k

B

T

/Z

Z =
X

x

e�
U(x)
k
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T

X

x

P (x) = 1



Relative Probability

• Computing rel. probability is easy:

P (xi) = e

�U(x
i
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• The calculation of                        however, is very demanding! 

• Analytic determination of Z is generally impossible! 
• Evaluating Z at random points is not accurate enough! 
• Approximating Z at nuclear ground-state only valid for T=0 K! 
• Calculation of P(x) by MD/MC requires unlimited computer time!

Z =
X

x

e�
U(x)
k

B

T
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Importance Sampling
• Till now we were selecting our configurations from a uniform 
distribution and weight the configurations a posteriori by means 
of the relative Boltzmann probability 

• Instead, we would like to sample a priori from the Boltzmann 
distribution and weight the configurations equally, i.e. 
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• But how? Since knowing the whole        corresponds to know Z!⇢(x) / e

�U(x)
k

B

T

hAi = lim
L!1

1

L

LX

i=1

⇢i(x)A(xi)



Metropolis Monte Carlo

THE 0 R Y 0 F T RAe KEF FEe T SIN R A D I 0 L Y SIS 0 F W ATE R 1087 

instead, only water molecules with different amounts of 
excitation energy. These may follow any of three paths: 

(a) The excitation energy is lost without dissociation 
into radicals (by collision, or possibly radiation, as in 
aromatic hydrocarbons). 

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage. 

(c) The molecules dissociate and escape from the 
cage. In this case we would not expect them to move 
more than a few molecular diameters through the dense 
medium before being thermalized. 

In accordance with the notation introduced by 
Burton, Magee, and Samuel,22 the molecules following 

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952). 

THE JOURNAL OF CHEMICAL PHYSICS 

paths (a) and (b) can be designated H 20* and those 
following path (c) can be designated H 20t. It seems 
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the 
H 20t molecules, but this is not likely to be a complete 
correspondence. 

In conclusion we would like to emphasize that the 
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters 
used. However, this treatment is classical, and a correct 
treatment must be wave mechanical; therefore the 
result of this section cannot be taken as an a priori 
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the 
occurrence of electron capture as described by this 
crude calculation. Further work is clearly needed. 

VOLUME 21, NUMBER 6 JUNE, 1953 

Equation of State Calculations by Fast Computing Machines 
NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER, 

Los Alamos Scientific Laboratory, Los Alamos, New Mexico 

AND 

EDWARD TELLER, * Department of Physics, University of Chicago, Chicago, Illinois 
(Received March 6, 1953) 

A general method, suitable for fast computing machines, for investigatiflg such properties as equations of 
state for substances consisting of interacting individual molecules is described. The method consists of a 
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere 
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared 
to the free volume equation of state and to a four-term virial coefficient expansion. 

I. INTRODUCTION 

T HE purpose of this paper is to describe a general 
method, suitable for fast electronic computing 

machines, of calculating the properties of any substance 
which may be considered as composed of interacting 
individual molecules. Classical statistics is assumed, 
only two-body forces are considered, and the potential 
field of a molecule is assumed spherically symmetric. 
These are the usual assumptions made in theories of 
liquids. Subject to the above assumptions, the method 
is not restricted to any range of temperature or density. 
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system. 
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a 
later paper. Also, the problem in three dimensions is 
being investigated. 

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California. 

II. THE GENERAL METHOD FOR AN ARBITRARY 
POTENTIAL BETWEEN THE PARTICLES 

In order to reduce the problem to a feasible size for 
numerical work, we can, of course, consider only a finite 
number of particles. This number N may be as high as 
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface 
effects we suppose the complete substance to be periodic, 
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we 
define dAB, the minimum distance between particles A 
and B, as the shortest distance between A and any of 
the particles B, of which there is one in each of the 
squares which comprise the complete substance. If we 
have a potential which falls off rapidly with distance, 
there will be at most one of the distances AB which 
can make a substantial contribution; hence we need 
consider only the minimum distance dAB. 

t We will use two-dimensional nomenclature here since it 
is easier to visualize. The extension to three dimensions is obvious. 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
131.234.229.67 On: Wed, 29 Apr 2015 07:37:33



Molecular Dynamics
Molecular Dynamics

Equations of Motion

Time evolution of a classical many-body system in a potential

L(R, Ṙ) = T (Ṙ)− V (R) =
1

2

∑

I

MIṘ
2
I − Φ({RI})

Euler-Lagrange equation

d

dt

∂L
∂ṘI

=
∂L
∂RI

Equation of motion

MIR̈I = −
∂Φ({RI})
∂RI

= FI

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 5 / 41



Molecular Dynamics

FI = �MIR̈I = �rRIE(R)



What are we interested in?

• Thermodynamic ensemble properties:
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Static equilibrium properties:

Dynamic properties:
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Thermodynamics: what are we interested in?

• Ergodic hypothesis: ensemble average equal to time average
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Thermodynamics: what are we interested in?

• Ergodic hypothesis: ensemble average equal to time average
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Molecular dynamic: the basic loop

1. Assign initial R (positions) and p (momenta)

2. Evolve (numerically) Newton's equations of 
motion for a discrete time increment (requires 
evaluation of the forces)

Integrating Newton’s EOM
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1. Assign initial R (positions) and p (momenta)

2. Evolve (numerically) Newton's equations of 
motion for a discrete time increment (requires 
evaluation of the forces)

3. Assign new positions and momenta

Molecular dynamic: the basic loopIntegrating Newton’s EOM



  

1. Assign initial R (positions) and p (momenta)

2. Evolve (numerically) Newton's equations of 
motion for a discrete time increment (requires 
evaluation of the forces)

3. Assign new positions and momenta

Molecular dynamic: the basic loopIntegrating Newton’s EOM



Integrating the equations of motion

• First shot: Taylor expansion of R
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2
I + µ

X

i

Z
dr|�̇i(r, t)|2

#
� E[n(r;R)] + 2�ij

Z
dr�⇤

i (r, t)�j(r, t)� �ij

�
(6)

Z
dr�⇤

i (r, t)�j(r, t) = �ij (7)

Z =
X

i

e��Ei (8)

< A >=
1

Z

X

i

e��EiAi ⇡ 1

T

Z T

0
dtA(t) (9)

< B(t0 + t)A(t0) >=
1

Z

X

i

e��EiBi(t0 + t)Ai(t0) ⇡ 1

T

Z T

0
dt0B(t+ t0)A(t0)(10)

R(t+�t) = R(t) +
p(t)

m
�t+
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ṗ(t)

2m
�t2 +

...
R(t)

�t3

3!
+O(�t4) (11)

R(t��t) = R(t)� p(t)

m
�t+
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• Simple truncation of the Taylor expansion is a bad idea 
• The naive „forward Euler“ algorithm is 

• not time reversible 
• does not conserve phase space volume 
• does not conserve energy

• Use Verlet’s algorithm instead
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ṗI = � @H
@RI

= �rIV (R) (4)

VBO(~R) = EDFT (~r; ~R) (5)

L =
1

2

"
X

I

MIṘ
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Velocity-Verlet Algorithm
Molecular Dynamics

Velocity Verlet Integrator

RI(t+∆t) = RI(t) +∆t× ṘI(t) +
∆t2

2MI
FI(t)

Calculate FI(t+∆t)

ṘI(t+∆t) = ṘI(t) +
∆t

2MI
[FI(t) + FI(t+∆t)]

Simple and efficient: Only FI(t), no higher derivatives required
Explicitly time reversible
Symplectic, i.e. conserves phase space volume

Excellent long time stability⇒ Energy conservation

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 6 / 41



Liouville Formalism
Molecular Dynamics

Liouville Formalism
How to construct accurate, symplectic and time reversible integrators?

Define phase space vector Γ = (R,P ) and commutator

{A,H} =
∂A

∂R

∂H

∂P
−
∂A

∂P

∂H

∂R

Hamilton’s equations of motion

dΓ

dt
= {Γ,H} ≡ 0

Define propagator L̂ such that

ι̇L̂Γ = {Γ,H}

Symplectic algorithm via Γ̇ = 0⇒

Γ(t) = eι̇L̂tΓ(0)

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 7 / 41



Lyapunov Instability
Molecular Dynamics

Lyapunov Instability
Why not going beyond the velocity Verlet Algorithm?

It’s impossible to determine initial conditions: ∆R×∆P ∼ !

Finite numerical accuracy of the integrator as well as Φ(R)

Even worse: The Lyapunov instability
∣
∣R(t) −R′(t)

∣
∣ ≈ ϵ× eλt

suggests an exponential dependence on them

I.e. even knowing Φ(R) exactly still causes an eλt divergence

Neither possible nor desirable to calculate exact trajectories

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 8 / 41



Molecular DynamicsConditions that we can simulate

• Microcanonical (NVE) ensemble: Number of particles, Volume, 
and total Energy are conserved

• Natural ensemble to simulate molecular dynamics (follows 
directly from Hamilton’s equation of motion



Molecular DynamicsConditions that we can simulate

• Microcanonical (NVE) ensemble: Number of particles, Volume, 
and total Energy are conserved

• Natural ensemble to simulate molecular dynamics (follows 
directly from Hamilton’s equation of motion

• Canonical (NVT) ensemble: Number of particles, Volume, and 
Temperature are conserved

• System in contact with a heat bath (discussed later on)



The Canonical Ensemble
• The idea: couple the system to a thermostat (heat bath)

• Interesting because:

• Experiments are usually done at constant temperature

• Better modeling of conformational changes

Temperature control: the canonical ensemble

System

Bath

Energy is 
not conserved

Energy is 
conserved



Maxwell Distribution
Temperature definition
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Kinetic Energy (a.u.)
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energy: p2/2M

Probability distribution of the kinetic energy:
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How to model a thermostat: first ideas

• Temperature rescaling: Berendsen “thermostat”

• Rescale velocities by a factor containing the ratio of target and 
instant temperature 

• Does not sample the canonical ensemble (wrong temperature 
distribution)

• “Flying ice-cube” effect: rotations and translations acquire high Ekin 
and vibrations are frozen 

H. J. C. Berendsen, et al. J. Chem. Phys. 81 3684 (1984)

• Simple stochastic idea: Andersen thermostat

• At each nth time-step, replace velocity of a random particle by one 
drawn from a Maxwell-Boltzmann distribution at target 
temperature

• Not very efficient, no conserved quantity

• Very sensitive on n H. C. Andersen, J. Chem. Phys. 72, 2384 (1980)

Thermostats: First Ideas
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instant temperature 
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• Very sensitive on n H. C. Andersen, J. Chem. Phys. 72, 2384 (1980)



G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).

Combine concepts from velocity rescaling (fast!) with
concepts from stochastic thermostats (accurate!)

Temperature
rescaling

White noise

Stochastic Velocity Rescaling

Target temperature follows a stochastic differential equation:
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Stochastic Velocity Rescaling
G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).
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• Very successful thermostat, weakly dependent on relaxation time τ
• Pseudo-Hamiltonian is conserved

Bussi, Parrinello, Phys. Rev. E 75, 056707 (2007)



Few words on newtonian vs. Langevin dynamics
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Langevin dynamics
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Heavy(er) body in a solvent (or gas)

friction random  
force

Newton vs. Langevin
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Heavy(er) body in a solvent (or gas)

friction random  
force

• In thermal equilibrium, drag of the friction and kicks of the random 
noise balance each other - Fluctuation Dissipation Theorem (FDT) 
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No memory of past times  
No frequency dependence (white noise)

Newton vs. Langevin
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Colored noise thermostats

Extremely flexible class of thermostats based on the  
Generalized Langevin Equation (GLE)
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where ⇠ is an array of uncorrelated Gaussian noises, V 0
(R) is the gradient of the potential (that can be, e.g.,

VBO) and the Ap and Bp are matrices that obey the relation

ApCp +CpA
T
p = BpB

T
p , (9)

where Cp is the covariance matrix defined as Cp = h(p, s)T (p, s)i. By integrating out the s degrees of
freedom, one gets dynamics of a non-Markovian process in the physical variables, with the EOM given by

˙R = p/m (10)

ṗ = �@V

@R
�
Z t

1
K(t� ⌧)p(⌧) + ⇣(t), (11)

where ⇣(t) is a correlated noise and K(t � ⌧) is a frequency dependent memory kernel which depends on
Ap. The fluctuation-dissipation theorem (and canonical sampling) is obeyed if h⇣(t)⇣(0)i = kBTK(t). The
freedom to fit and choose Ap and Cp (so that Bp is automatically defined), and even break the fluctuation-
dissipation relation, is what renders this type of thermostat so flexible. It is possible to simulate a quantum
bath [67] by modeling the frequency dependent quantum fluctuations of the degrees of freedom. This later
property can also be used in connection to path integral molecular dynamics [23] to perform converged
simulations with only a few beads (explained in the next section).

4.2.3 Path-integral molecular dynamics

The Feynman path integral formalism [14] is the current method of choice to simulate nuclear quantum
effects. Large systems can be treated with this formalism, and it can, in principle, be exact. Usually,
exchange effects are ignored and the nuclei are treated as distinguishable particles. Exploring the fact
that the quantum time propagator [exp(i ˆHt)] is equal to the quantum density matrix [exp(�� ˆH), where
� = 1/(kBT )] at imaginary time i�~, one can rewrite quantum mechanics in the path integral formalism.
The observables in quantum mechanics can be evaluated as quantum thermodynamical averages, provided
that the partition function is known. The canonical partition function Z =Tr[exp(�� ˆH)] can be calculated by
performing a Trotter factorization [68] of the trace, producing,
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(2⇡~)NP

Z
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Z
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exp

�HP (R,p)

PkBT

�

, (12)

where P is the so called Trotter number, corresponding to the number of identities introduced to factorize
the trace. The non-commuting nature of the position and momentum operators gives rise to HP , which
is nothing more than a classical ring-polymer Hamiltonian consisting of P “beads” connected by harmonic
springs. It is given by
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N
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12
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of freedom

Original system Friction and  White Noise

• Markovian (no memory) process in high dimensions

Colored Noise Thermostat



• Non-Markovian process for the system (integrating out s):
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Colored noise thermostats

Extremely flexible class of thermostats based on the  
Generalized Langevin Equation (GLE)
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ṗ

ṡ
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property can also be used in connection to path integral molecular dynamics [23] to perform converged
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4.2.3 Path-integral molecular dynamics

The Feynman path integral formalism [14] is the current method of choice to simulate nuclear quantum
effects. Large systems can be treated with this formalism, and it can, in principle, be exact. Usually,
exchange effects are ignored and the nuclei are treated as distinguishable particles. Exploring the fact
that the quantum time propagator [exp(i ˆHt)] is equal to the quantum density matrix [exp(�� ˆH), where
� = 1/(kBT )] at imaginary time i�~, one can rewrite quantum mechanics in the path integral formalism.
The observables in quantum mechanics can be evaluated as quantum thermodynamical averages, provided
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performing a Trotter factorization [68] of the trace, producing,
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where P is the so called Trotter number, corresponding to the number of identities introduced to factorize
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is nothing more than a classical ring-polymer Hamiltonian consisting of P “beads” connected by harmonic
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• Markovian (no memory) process in high dimensions
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Colored noise thermostats

• Input matrices Ap (and Cp), connected by:

6 THE AUTHOR

ẋ = p/m(67)

ṗ = �⇤V

⇤x
�
� t

�
K(t� ⇥)p(⇥) + �(t)(68)

(69) H(t) = ⇥�(t)�(0)⇤ = kBTK(t)

(70) ApCp +CpA
T
p = BpB

T
p

(71) Cp = ⇥(p, s)T (p, s)⇤

covariance 
matrix 

• However, flexible:

• For canonical sampling, Cp = 1kBT and FDT is obeyed

• For other samplings one can break FDT

• What can you model?

• Nuclear quantum effects, excitation of single modes

• Make “Path Integral Molecular Dynamics” computationally 
cheaper Ceriotti, Manolopoulos, Parinello, JCP 134, 084104 (2011)

Colored Noise Thermostat



Molecular DynamicsConditions that we can simulate

• Microcanonical (NVE) ensemble: Number of particles, Volume, 
and total Energy are conserved

• Natural ensemble to simulate molecular dynamics (follows 
directly from Hamilton’s equation of motion

• Canonical (NVT) ensemble: Number of particles, Volume, and 
Temperature are conserved

• System in contact with a heat bath (discussed later on)

• Isothermic-Isobaric (NPT) ensemble: Number of particles, 
Pressure, and Temperature are conserved



Bath

• Definition of instantaneous pressure:  
 

• Similar schemes as thermostats: pressure rescaling, extended 
Lagrangian, stochastic pressure rescaling  
Parinello and Rahman, J. Appl. Phys 52, 7182 (1981);  
Bussi, Zykova-Timan, Parrinello, J. Chem. Phys. 130, 074101 (2009)

• Use thermostat together with a barostat to control pressure 
and temperature

Pressure control: Isobaric-isothermic ensemble

System

MD: Final Flow Chart

Simulation of Biomolecules – p. 31

MD simulations at constant pressure

• Most experiments are performed at constant pressure instead of
constant volume
⇒ isothermal-isobaric ensemble

• The volume is thus a dynamical variable that changes during the
simulation.

• The pressure of a classical N -body system can be calculated
using Clausius virial theorem,

P =
2

3V
(Ekin − Ξ) (9)

with the box volume V , the kinetic energy Ekin and the inner virial
for pairwise additive interactions

Ξ =
1

2

∑

i<j

rij · f(rij) (10)

f(rij) is the force between particles i and j at a distance rij .

Simulation of Biomolecules – p. 32
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Isobaric-Isothermic MD



Molecular DynamicsConditions that we can simulate

• Microcanonical (NVE) ensemble: Number of particles, Volume, 
and total Energy are conserved

• Natural ensemble to simulate molecular dynamics (follows 
directly from Hamilton’s equation of motion

• Canonical (NVT) ensemble: Number of particles, Volume, and 
Temperature are conserved

• System in contact with a heat bath (discussed later on)

• Isothermic-Isobaric (NPT) ensemble: Number of particles, 
Pressure, and Temperature are conserved

“Computer experiment”: equilibrate system and measure



Molecular Dynamics



Molecular Dynamics 
(MD)

Ab-Initio MD 
(AIMD)

Path-Integral MD 
(PIMD)

Ab-Initio PIMD 
(AI-PIMD)

Electrons

N
uc

le
i

MIR̈I = −∇RI
[ε(R) + VKK(R)]

He(r;R)ψ(r;R) = ε(R)ψ(r;R)

Classical Quantum Mechanical

C
lassical

Q
uantum

 M
ech.



Ab-Initio Molecular Dynamics Born-Oppenheimer Molecular Dynamics

Born-Oppenheimer Molecular Dynamics

Φ(R) = EDFT
KS

[

{ψi};R
]

+ EII(R) = E
[

{ψi};R
]

Born-Oppenheimer Lagrangian

LBO
(
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)

=
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2

N
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I=1

MIṘ
2
I −min

{ψi}
E
[

{ψi};R
]
∣
∣
∣
∣
{⟨ψi|ψj⟩=δij}

The forces are obtained by solving the Euler-Lagrange equation

d

dt

∂L
∂ṘI

=
∂L
∂RI

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 18 / 41

Born-Oppenheimer MD



Ab-Initio Molecular Dynamics Born-Oppenheimer Molecular Dynamics

Nuclear forces in BOMD

MIR̈I = −∇RI

[

min
{ψi}

E
[
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]
∣
∣
∣
∣
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If and only if ⟨ψi| is an eigenfunction, then

MIR̈I = −
∂E

∂RI
+

∑

i,j

Λij
∂

∂RI
⟨ψi | ψj⟩

However, in general the HF-Theorem can not be assumed

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 19 / 41

Born-Oppenheimer MD



Ab-Initio Molecular Dynamics Born-Oppenheimer Molecular Dynamics

Convergence of the Born-Oppenheimer forces

May be good enough to optimize the geometry, but not for AIMD

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 20 / 41

Born-Oppenheimer MD
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Ab-Initio Molecular Dynamics Born-Oppenheimer Molecular Dynamics

Born-Oppenheimer Molecular Dynamics: Summary

Large integration time steps

Potential energy on the BO surface

Expensive optimization of the WF required

Very stringent SCF convergence requirement

However: >> 105 electronic structure calculations are required

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 21 / 41

Born-Oppenheimer MD



Car-Parrinello MD
Formulations Potential energy Initialization Verlet algorithm MD: Steps MD: Thermo and barostats CP: Car-Parrinello Atomic units MD and CP textbooks

The Car-Parrinello formulation II

"The 2009 Dirac Medal recognizes the joint contributions of Roberto Car and Michele Parrinello in developing the ab initio
simulation method in which they combined, elegantly and imaginatively, the quantum mechanical density functional method for the
calculation of the electronic properties of matter with molecular dynamics methods for the Newtonian simulation of atomic motions.
The Car-Parrinello method has had an enormous impact, joining together the fields of simulation and of electronic structure theory,
and has given rise to a variety of applications well beyond condensed matter physics."

V. Luaña & A. Otero-de-la-Roza () Molecular dynamics: Car-Parrinello method ZCAM, Zaragoza 2013 29 / 36



Car-Parrinello MD

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)
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Ab-Initio Molecular Dynamics Car-Parrinello Molecular Dynamics

What is the big deal?
Beside that it circumvent the SCF cycle, what is so clever about it?

If µ is sufficiently small, the electrons adiabatically follow the ions
In this case the metastable state can be sustained and ψ̈i ≃ 0

∂E
[

{ψi};RI

]

∂⟨ψi|
−
∑

j

Λij |ψj⟩ ≃ 0

I.e. on ionic timescales the electron oscillations averages out
⇒ ⟨ψi| is an eigenfunction of HCP

e , thus the HF-Theorem holds
Energies & Forces are NOT on the BO surface, but are consistent

d

dt

{

HBO +
1

2
µ

M
∑

i=1

⟨ψ̇i | ψ̇i⟩

}

=
dHCP
dt

= 0
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Adiabatic separation
Vibrational spectra of electrons and ions do not overlap

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 28 / 41
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Metallic systems: Loss of adiabaticity

Vacancy in a hot 64-atom Si cell

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 34 / 41
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Metallic systems: Electron Thermostat
P. E. Blöchl & M. Parrinello, Phys. Rev. B 45, 9413 (1992)

64 atoms of molten aluminum
(a): Without thermostat
(b): With thermostat

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 35 / 41



Car-Parrinello MD
Introduction Car-Parrinello Molecular Dynamics

A very brief review of CPMD III
The fictitious mass parameter µ

Principal task of µ: Coupling between ṘI and ψ̇i

|ψµ(r, t)− ψ0(r, t)| ≤ C
√
µ

∆tmax ∝
√

µ

∆Egap

µ acts as a continuous slider between speed and accuracy
Typically, the timestep is ∼ 5×−10× smaller than in BOMD
Depends on the application if either CPMD or BOMD is to favor
Metals are problematic: Finite electron temperature or thermostats

Desirable to eliminate µ!

Thomas D. Kühne (University of Mainz) Next Generation CPMD: Theory & Application NAMET Workshop, 23.09.2010 5 / 34



BOMD vs. CPMD
BOMD CPMD

Energy Conservation fair excellent

Iterative Optimization yes no

Exactly on the BO-Surface yes no

Integration time-step large small

Metals and small band-gap possible difficult
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FIG. 1. Deviations from the BO surface of liquid SiO2 in
terms to total energies (upper panel) and mean force devia-
tions (lower panel). The deviation in the energies corresponds
to a constant shift of 4.16×10−4 Hartree per atom for one cor-
rector step and 3.5×10−5 Hartree per atom for two corrector
steps. The average mean force deviation is unbiased.

Illustrative Examples: Liquid Silicon, Silica and
Water

For the purpose of demonstrating this new approach,
we have implemented it in the mixed Gaussian Plane
Wave [106] code Quickstep [107, 108], which is part
of the publicly available suite of programs CP2K [109].
In order to illustrate that this method works well ir-
respective of band-gap, system size and type, calcula-
tions on liquid metallic silicon, silica and water are pre-
sented. All of these systems are known to be very dif-
ficult, and are examples of liquid metals (Si), complex
and highly polarizable ionic liquids (SiO2), as well as
hydrogen bonded fluids (H2O). The fact that the simula-
tions have been performed in the liquid phase at 3000 K,
3500 K and 325 K respectively, leads to rapidly varying
density matrix elements, thus making the propagation of
the electronic degrees of freedom particularly challeng-
ing. Hence, the selected test cases can be considered as
worst-case scenarios for any computational method.
All simulations have been performed at their ex-

perimental liquid densities using triple-zeta (TZV2P)
basis sets, adequate density cutoffs, norm-conserving
Goedecker-Teter-Hutter pseudopotentials [110, 111] and
the generalized gradient approximation to the exact ex-
change and correlation functional [112]. For simplicity
the Brillouin zone is sampled at the Γ-point only, while
Eq. (43) is integrated using the algorithm of Ricci and
Ciccotti [113], where the values for γD turned out to be
in the range of 10−4 fs−1. The new C’s are predicted
using K = 4 in Eq. (36), which ensures time-reversibility
up to O(∆t6).
First, the accuracy in terms of the energetic deviation

from the BO surface is considered. As can be seen in
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FIG. 2. Partial pair-correlation functions g(r) of liquid Si
(upper left panel) and liquid SiO2 at 3000 K and 3500 K,
respectively.

FIG. 1 the energies are an upper bound to the electronic
ground state and are displaced by a very small and ap-
proximately constant amount. It is also shown that, as
already mentioned, the deviation from the BO surface
can be even further reduced by increasing the number of
corrector steps. In fact, it is actually possible to control
the deviation from the BO surface by varying the number
of corrector steps in order to achieve a preassigned accu-
racy level. However, in the following only simulations
based on a single corrector step, i.e. only one precondi-
tioned electronic gradient calculation, will be reported.
Nevertheless, let us now to turn to more realistic prob-

lems such as those shown in FIG. 2. Although these sim-
ulations have been performed with only a single corrector
step, they are still amazingly close to the BOMD refer-
ence results. It should be emphasized that even in liquid
Si, which is metallic and poses problems when using an
ordinary CP scheme, a single corrector step is sufficient.
This establishes the efficiency of this method, since only
a single preconditioned gradient calculation with no ad-
ditional minimization step has to be performed. The
possible acceleration, in comparison with regular BOMD
calculations, depends crucially on the system studied. In
the undoubtedly difficult cases just presented a speed-
up of two orders of magnitude compared to using a pure
extrapolation scheme have been observed [51, 108]. For
simpler problems still an increase in efficiency of at least
one order of magnitude can be expected.
In FIG. 3 we present results, which demonstrate that

also dynamical properties can be accurately calculated.
To that extend the velocity autocorrelation function and
its temporal Fourier transform at 325 K is shown. The
results are in good agreement with accurate reference
calculations and are consistent with experiment, as well
as ab-initio all-electron calculations [58], showing that
in spite of the stochastic nature of Eq. (43) dynamical
properties can also be simulated. This implies, that also

T. D. Kühne, M. Krack, F. Mohamed and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)



„On-the-fly“ Spectroscopy

P. Partovi-Azar and T. D. Kühne, J. Comp. Chem. 36, 2188 (2015)
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Importance of NQE
• Classically the average value of the kinetic energy follows equipartition 

(Boltzmann operator factorizes) and is given by
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• In quantum mechanics, Boltzmann operator does not factorize (because 
momentum and position do not commute). E.g. for a system of harmonic 
oscillators:

Where are nuclear quantum effects important?
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What about dynamical observables?

Path Integral MD uses ring polymer trajectories to estimate static 
averages of the form:

However, many important quantities are given by dynamic averages:

PIMD does NOT give access to real time propagation (momenta are 
fictitious)

Ring-Polymer MD



  

What about dynamical observables?

PIMD does NOT give access to real time propagation.
However, by normal mode transformation of free ring-polymer modes:

Ring polymer molecular dynamics (RPMD) [1]
Masses of the beads are the real masses
Problem: beads frequencies resonate with 
physical frequencies

Centroid MD (CMD) [2]
Centroid moves in the effective potential 
generated by the internal modes of the ring
Beads have small masses: need for a special 
thermostat
Problem: curvature problem

Ring-Polymer MD
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Quantum-RPC
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Water: Quo Vadis DFT?
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