Padeborn, August 28th 2018

CP2K: GAPW & Spectroscopy

Marcella Iannuzzi University of Zurich

Basis Set Representation

KS matrix formulation when the wavefunction is expanded into a basis

System size { N_{el} , M}, P [M×M], C [M×N]

 $\psi_{i}(\mathbf{r}) = \sum_{\alpha} C_{\alpha i} \phi_{\alpha}(\mathbf{r})$ $n(\mathbf{r}) = \sum_{i} \sum_{\alpha \beta} f_{i} C_{\alpha i} C_{\beta i} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r}) = \sum_{\alpha \beta} P_{\alpha \beta} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r})$

Variational principle Constrained minimisation problem

 $\mathbf{P} = \mathbf{P}\mathbf{S}\mathbf{P}$

KS total energy

 $E[\{\psi_i\}] = T[\{\psi_i\}] + E^{\text{ext}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n] + E^{II}$

Matrix formulation of the KS equations

 $\mathbf{K}(C)\mathbf{C} = \mathbf{T}(C) + \mathbf{V}_{\text{ext}}(C) + \mathbf{E}^{\text{H}}(C) + \mathbf{E}^{\text{xc}}(C) = \mathbf{S}\mathbf{C}\varepsilon$

classes of Basis Sets

Extended basis sets, PW : condensed matter

Localised basis sets centred at atomic positions, GTO

Idea of GPW: auxiliary basis set to represent the density

Mixed (GTO+PW) to take best of two worlds, GPW

Magmented basis set, GAPW: separated hard and soft density domains

linear scaling KS matrix computation for GTO

Gaussian basis sets (many terms analytic)

$$\psi_i(\mathbf{r}) = \sum_{\alpha} C_{\alpha i} \phi_{\alpha}(\mathbf{r}) \qquad \phi_{\alpha}(\mathbf{r}) = \sum_{m} d_{m\alpha} g_m(\mathbf{r}) \qquad g_m(\mathbf{r}) = x^{m_x} y^{m_y} z^{m_z} e^{-\alpha_m r^2}$$

% Pseudo potentials

Plane waves auxiliary basis for Coulomb integrals

Regular grids and FFT for the density

Sparse matrices (KS and P)

Set Streening

G. Lippert et al, Molecular Physics, 92, 477, 1997 J. VandeVondele et al, Comp. Phys. Comm.,167 (2), 103, 2005

GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS

Q	6-31Gx 6-31G* SZ SZNOLCIHI-G	TH SZV-MOLOPT	GTH-q6							
1	0 b 6 1									
20	⁰ 548496411760b01	0.00183110	0.0005400000			O 6-311++G	3df3pd	6-311++G(30	lf,3pd)	
	1211120200000552 825.28200000552	1920-00395000659	6936746998849	273		9	1	× ×	· I /	
	-1.88.0469509484] 2.048398039874	910.00844930053	64_{10}	449		1 0 0 6 1				
	² 527964586669752 0.832381575582	130.232704307246	2326999159857	083		8588.5000	00000	0.0018951	5	
	16.89737666388	345035328260036	22470867438777	957		1297.2300	00000	0.01438590	C	
1	#5.79963530 #142977330880	0.35852090	.173039869300			299.2960	0000	0.07073200		
1	DODZIND GITH -	0.000255945800 0	0.009726110600			87.37710	0000	0.24000100		
#	2 50002260	-0.110///30	0.07087430			25.67890	0000	0.59479700		
0	$D_{\mathbf{Z}} \times P_{\mathbf{Z}} $	GTH2DZVB0U	OPT-GTH-gp			3./40040	000	0.28080200		
1	0 1 18130438554	492 0.15101659	0.72713800	00 -0.0995679	9273 0.0000	101311 00000011750		0 11388000	0.03	651170
2(0 ^{°2} 7.2729055894841	911.000008931953	86400 000000 00000	000 -0.301142	2449 0.0000	00000002837	000	0.92081100	0.03	715300
1	$12.0\overline{15954705512}$ $2^{2}2^{1}10175973732$	4.060190841200 4.34 -0.69717240		0036543638800	70834210557		254400	-0.00327447	0.25	970200
	5.108150287385-	0129597923300 300000 0000 01336)710885902200 (22 - 1 0000000)120927648700	<u>0.1206197709</u> 7957 - 1.0000	00 0.0681861 00 0 0001-1-1	59300	0.00027117	0.01	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
#	2.048398039874	0.118175889400-0	0.05373240640000	0.251093670300	0.2137194646	$00^{\circ}0.2905764$	99200	1.00000000	1.00	000000
0 6	6-31 UXX P8344000	0.462964485000 -0 MACA1=AAAAAAAAAAA	0.572670666200).352639910300	-0.4/36/48584		89500			
4	0.33231024043394	0.4003394820009 0.002715833600_0	19980/00000/00 (1387201/58600 ().294/08043200	0.48484837040	0 0.3070201	14200	1.00000000	1.000	000000
1	0.042917550880 0.0461 0.0472740062800	0.092713833000 0	0.387201438000 (0.00726110600	0.71740391970	$10 \ 0.3103400$	34400			
#	3484.67170000	0.00183110	1.003823849000	0.009720110000	0.03249097940	5.16000	000	1.00000000		
" 0	825.23495000 Taxa-Malapt-(0.01395010 GTH TZVP-MOL()PT-GTH-a6			1 2 2 1 1				
1		0.06844510	460 0.000000			1.29200	000	1.0000000		
2 (52.9104.500004419 0 2 7 3 3 3 7 7 0 0 0 0 5	938230098893984 06.470102000702	460 0.0000000		0000 - 0.0595	0\$0 <u>0</u> 9244 10.0		0000 0.0000		
	12,04,595,470,5512	96.40.19200 / 83 0.060120841200 -	39 0.000000000 0.065738617900	0,041006765400	000 -0.18/5	6490 4 32260 98-0934210	557400-	0.0005926402	200.0.014	807054400
1	5.108150287385 -	0.129597923300	000000000000000000000000000000000000000	0.080644802300	0.1209276487	0-0.120619	20200	0008523494(000000000000000000000000000000000000000	86159300
1	2,0483980398744	574 8 07.5285400-0 7.1 8 07.5285400-0	02375.0000000	9.087639801900	0.2910936703	02262537192	846699	1.0012865098	90999985	76499200
	0.83268146298201	0966246468500036	951727372848130000	9.43507.8312800	0.9926999103	00102736048	<u>984000</u>	00018720005	6000000	344189500
	0.352326246455 (0.450353782600 0 1.13076700).186760006700 (0.72715860).722792798300	0.29470864520	0 0.4848483	76400 0	.53050476470	0 0.3076	56114200
1	0.1429778508600	0009271.6866660000	037201458600 -0	0.521378340700	0.17303986930	00 0.7174659	19700 -0).4361840437(0 0.3183	46834400
	0.046760918300 -	0.000255945800 (1.000000000).003825849600(1.00000000	0.175643142900	0.00972611060	00 0.0324989	79400 0	.07332925950	0 -0.0057	71736600
1	2 2 1 1									
	0.80000000	1.00000000								

GTO in CP2K

ᢟ The repository contains several GTO libraries

Cp2k/data/ALL_BASIS_SETSBASIS_RI_cc-TZALL_POTENTIALSBASIS_SETBASIS_ADMMBASIS_ZIJLSTRABASIS_ADMM_MOLOPTDFTBBASIS_LRIGPW_AUXMOLOPTECP_POTENTIALSBASIS_MOLOPTEMSL_BASIS_SETSBASIS_MOLOPT_UCLGTH_BASIS_SETS

GTH_POTENTIALS HFX_BASIS HF_POTENTIALS MM_POTENTIAL NLCC_POTENTIALS POTENTIAL README

dftd3.dat nm12_parameters.xml rVV10_kernel_table.dat t_c_g.dat t_sh_p_s_c.dat vdW_kernel_table.dat

Tools for the optimisation of GTO basis sets are available in cp2k, based on atomic and molecular electronic structure calculations

Generate GTO basis set

&ATOM

ELEMENT Ru RUN_TYPE BASIS_OPTIMIZATION ELECTRON_CONFIGURATION CORE 4d7 5s1 CORE [Kr] MAX_ANGULAR_MOMENTUM 2 **&METHOD** METHOD_TYPE KOHN-SHAM &XC &XC_FUNCTIONAL &PBE &END &END XC_FUNCTIONAL &END XC &END **METHOD &OPTIMIZATION** EPS SCF 1.e-8 **&END OPTIMIZATION** &PP_BASIS NUM GTO 666 S_EXPONENTS 3.73260 1.83419 0.80906 0.34515 0.13836 0.04967 P_EXPONENTS 3.73260 1.83419 0.80906 0.34515 0.13836 0.04967 D EXPONENTS 3.73260 1.83419 0.80906 0.34515 0.13836 0.04967 EPS EIGENVALUE 1.E-14 &END **PP_BASIS**

APOTENTIAL PSEUDO TYPE GTH >H_POTENTIAL 0 7 1 0.61211332 1 5.04489332 3 0.6421504 2 4.625563 -1.8033490 2.32811359 0.6793665 2 3.233952 -2.42101064 2.86457842 0.3805972 2 -15.5316 13.58045054 -15.39878349&END GTH_POTENTIAL 0.5 20.00 4.5 CONFINEMENT &END **POTENTIAL &POWELL** ACCURACY 1.e-8 STEP SIZE 1.0 &END **POWELL &END ATOM**

GTH PP for O: 6 val. el.

&ATOM

ELEMENT O RUN_TYPE **PSEUDOPOTENTIAL_OPTIMIZATION** ELECTRON_CONFIGURATION [He] 2s2 2p4 CORE [He] MAX_ANGULAR_MOMENTUM 2 COULOMB INTEGRALS ANALYTIC EXCHANGE_INTEGRALS ANALYTIC **&METHOD** METHOD_TYPE KOHN-SHAM RELATIVISTIC DKH(2) δXC &XC_FUNCTIONAL PBE0 &END XC FUNCTIONAL &END XC &END METHOD **OPTIMIZATION** EPS SCF 1.e-10 **&END &PRINT &BASIS_SET** &END &END

&AE BASIS BASIS_TYPE GEOMETRICAL_GTO &END AE_BASIS &PP BASIS BASIS_TYPE GEOMETRICAL_GTO &END PP BASIS **APOTENTIAL** PSEUDO TYPE GTH >H_POTENTIAL 2 4 0.24455430 2 -16.66721480 2.48731132 2 0.22095592 1 18.33745811 0.21133247 0 &END GTH POTENTIAL &END **POTENTIAL** &POWELL

ACCURACY 1.e-10 STEP_SIZE 0.5 WEIGHT_PSIR0 0.1 &END

&END ATOM

GTH_POTENTIALS

C GTH-BLYP-q4 2 2 0.33806609 2 -9.13626871 1.42925956 2 0.30232223 1 9.66551228 0.28637912 0 # N GTH-BLYP-q5 2 3 0.28287094 2 -12.73646720 1.95107926 2 0.25523449 1 13.67893172 0.24313253 0

#			
Al GTH- <mark>PBE</mark> -q3	3		
2 1			
0.45000000	1	-7.55476126	
2			
0.48743529	2	6.95993832	-1.88883584
		2.4384765	59
0.56218949	1	1.86529857	

GPW Functional

$$E^{\mathrm{el}}[n] = \sum_{\mu\nu} \mathcal{P}_{\mu\nu} \left\langle \varphi_{\mu} \left| -\frac{1}{2} \nabla^{2} + V_{\mathrm{loc}}^{\mathrm{SR}} + V_{\mathrm{nl}} \right| \varphi_{\nu} \right\rangle$$

+
$$2\pi\Omega \sum_{\mathbf{G}} \frac{\tilde{n}_{\mathrm{tot}}^{*}(\mathbf{G})\tilde{n}_{\mathrm{tot}}(\mathbf{G})}{\mathbf{G}^{2}} + \sum_{\mathbf{R}} \tilde{n}(\mathbf{R})V^{\mathrm{XC}}(\mathbf{R})$$

=
$$\sum_{\mu\nu} \mathcal{P}_{\mu\nu} \left(\left\langle \varphi_{\mu} \left| -\frac{1}{2} \nabla^{2} + V^{\mathrm{ext}} \right| \varphi_{\nu} \right\rangle + \sum_{\mathbf{R}} V_{\mu\nu}^{\mathrm{HXC}}(\mathbf{R})\varphi_{\mu\nu}'(\mathbf{R}) \right)$$

Linear scaling KS matrix construction

&FORCE_EVAL METHOD Quickstep

& DFT

BASIS_SET_FILE_NAME GTH_BASIS_SETS POTENTIAL FILE NAME GTH POTENTIALS LSD F MULTIPLICITY 1 CHARGE Ø **&MGRID** CUTOFF 300 REL CUTOFF 50 &END MGRID &**QS** EPS DEFAULT 1.0E-10 &END **OS &SCF** MAX_SCF 50 EPS_SCF 2.00E-06 SCF_GUESS ATOMIC &END SCF &XC **&XC_FUNCTIONAL** &PBE &END PBE &END XC_FUNCTIONAL

&XC_GRID XC_DERIV SPLINE2_smooth XC_SMOOTH_RH0 NN10 &END XC GRID &END XC &END **DFT &SUBSYS &CELL** PERIODIC XYZ ABC 8. 8. 8. &END CELL &COORD 0 0.000000 0.000000 -0.065587 0.000000 -0.757136 0.520545 Н 0.757136 Н 0.520545 0.000000 &END COORD &KIND H BASIS_SET DZVP-GTH-PBE POTENTIAL GTH-PBE-q1 &END KIND &KIND 0 BASIS_SET DZVP-GTH-PBE POTENTIAL GTH-PBE-q6 &END KIND &END **SUBSYS** &END FORCE_EVAL

Hard and Soft Densities

Formaldehyde

LAPW, LMTO (OK Andersen, PRB 12, 3060 (1975)

Solution ⇒ localized orbitals and PW PAW (PE Bloechl, PRB, 50, 17953 (1994))

Partitioning of the Density

$$n(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r})$$

$$n = \tilde{n} + \sum_{A} n_{A} - \sum_{A} \tilde{n}_{A}$$

$$n(\mathbf{r}) - \tilde{n}(\mathbf{r}) = 0$$

$$n_{A}(\mathbf{r}) - \tilde{n}_{A}(\mathbf{r}) = 0$$

$$r \in I$$

$$n(\mathbf{r}) - n_{A}(\mathbf{r}) = 0$$

$$r \in A$$

$$\tilde{n}(\mathbf{r}) - \tilde{n}_{A}(\mathbf{r}) = 0$$

$$n_{A}(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \chi^{A}_{\mu} \chi^{A}_{\nu} \qquad \tilde{n}(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \tilde{\varphi}_{\mu} \tilde{\varphi}_{\nu} \to \sum_{\mathbf{G}} \hat{n}(\mathbf{G}) e^{i\mathbf{G}\cdot\mathbf{R}}$$

Gaussian Augmented Plane Waves

$$n_A(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \chi^A_{\mu} \chi^A_{\nu}$$

 X_{μ} projection of φ_{μ} in Ω_{A} through atom-dependent d'

projector basis (same size)

$$\{p_{\alpha}\} \qquad \lambda_{\alpha} = k^{\alpha} \lambda_{min} \qquad \langle p_{\alpha} | \varphi_{\mu} \rangle = \sum_{\beta} d_{\mu\beta}^{\prime A} \langle p_{\alpha} | g_{\beta} \rangle$$

$$n_{A}(\mathbf{r}) = \sum_{\alpha\beta} \left[\sum_{\mu\nu} P_{\mu\nu} d_{\mu\alpha}^{\prime A} d_{\nu\beta}^{\prime A} \right] g_{\alpha}(\mathbf{r}) g_{\beta}(\mathbf{r}) = \sum_{\alpha\beta} P_{\alpha\beta}^{\prime A} g_{\alpha}(\mathbf{r}) g_{\beta}(\mathbf{r})$$

Density Dependent Terms: XC

Semi-local functionals like local density approximation, generalised gradient approximation or meta-functionals

$$\begin{array}{ll} \text{Gradient:} & \nabla n(\mathbf{r}) = \nabla \tilde{n}(\mathbf{r}) + \sum_{A} \nabla n_{A}(\mathbf{r}) - \sum_{A} \nabla \tilde{n}_{A}(\mathbf{r}) \\ & E[n] = \int \ V_{loc}(\mathbf{r})n(\mathbf{r}) & = \ \int \left\{ \tilde{V}_{loc}(\mathbf{r}) + \sum_{A} V_{loc}^{A}(\mathbf{r}) + \sum_{A} \tilde{V}_{loc}^{A}(\mathbf{r}) \right\} \\ & \times \ \left\{ \tilde{n}(\mathbf{r}) + \sum_{A} n_{A}(\mathbf{r}) - \sum_{A} \tilde{n}_{A}(\mathbf{r}) \right\} d\mathbf{r} \\ & = \int \left\{ \tilde{V}_{loc}(\mathbf{r})\tilde{n}(\mathbf{r}) + \sum_{A} V_{loc}^{A}(\mathbf{r})n_{A}(\mathbf{r}) - \sum_{A} \tilde{V}_{loc}^{A}(\mathbf{r})\tilde{n}_{A}(\mathbf{r}) \right\} \right\}$$

Density Dependent Terms: ES

Non local Coulomb operator

$$\mathbf{n^{0}(\mathbf{r})} = \sum_{A} \mathbf{n^{0}_{A}(\mathbf{r})} = \sum_{A} \left\{ \sum_{L} Q_{A}^{L} g_{A}^{L}(\mathbf{r}) \right\} \quad \begin{array}{l} \text{Compensation} \\ \text{charge} \end{array}$$

Same multipole expansion as the local densities

$$\mathcal{Q}_A^L = \int \left\{ n_A(\mathbf{r}) - \tilde{n}_A(\mathbf{r}) + n_A^Z(\mathbf{r}) \right\} r^l \mathcal{Y}_{lm}(\theta\phi) r^2 dr \sin(\theta) d\theta d\phi$$

$$V[\tilde{n} \star \mathbf{n}^{0}] + \sum_{A} V[\mathbf{n}_{A} \star \mathbf{n}_{A}^{Z}] - \sum_{A} V[\tilde{\mathbf{n}}_{A} \star \mathbf{n}_{A}^{0}]$$

Interstitial region Atomic region

GAPW Functionals

$$E_{xc}[n] = E_{xc}[\tilde{n}] + \sum_{A} E_{xc}[n_{A}] - \sum_{A} E_{xc}[\tilde{n}_{A}]$$

$$E_{H}[n + n^{Z}] = E_{H}[\tilde{n} + \mathbf{n}^{0}] + \sum_{A} E_{H}[n_{A} + n_{A}^{Z}] - \sum_{A} E_{H}[\tilde{n}_{A} + \mathbf{n}^{0}]$$
on global grids
via collocation + FFT
Analytic integrals
Local Spherical Grids

Lippert et al., Theor. Chem. Acc. 103, 124 (1999); Krack et al, PCCP, **2**, 2105 (2000) Iannuzzi, Chassaing, Hutter, Chimia (2005); VandeVondele , Iannuzzi, Hutter, CSCM2005 proceedings

Integrals on Atom Centered Grids

Separation into radial and angular contributions

$$n_{A}(\mathbf{r}) = \sum_{\alpha\beta} P_{\alpha\beta}^{A} r^{l_{\alpha}} e^{-\alpha_{\alpha}r^{2}} \mathcal{Y}_{l_{\alpha}m_{\alpha}}(\theta,\phi) r^{l_{\beta}} e^{-\alpha_{\beta}r^{2}} \mathcal{Y}_{l_{\beta}m_{\beta}}(\theta,\phi)$$
$$= \sum_{\alpha\beta} \left[P_{\alpha\beta}^{A} r^{l_{\alpha}+l_{\beta}} e^{-(\alpha_{\alpha}+\alpha_{\beta})r^{2}} \sum_{LM} C(\alpha,\beta,L,M) \mathcal{Y}_{LM}(\theta,\phi) \right]$$
$$= \sum_{LM} \left[\sum_{\alpha\beta} n_{\alpha\beta}^{(r)}(r) C(\alpha,\beta,L,M) \right] \frac{\text{Clebsch-Gordon expansion}}{\mathcal{Y}_{LM}(\theta,\phi)}$$

 $\langle lpha | V_{
m XC}^A | eta
angle \qquad \langle lpha | V_{
m H}^A | eta
angle \qquad {
m integrated numerically on spherical grids}$

Radial : Gauss-Chebyshev quadrature Angular : Lebedev quadrature

GAPW Input

&DFT		i	&SUBSYS
			•••
&QS			&KIND O
EXTRAPOLATIO	N ASPC		BASIS_SET DZVP-MOLOPT-GTH-q6
EXTRAPOLATIO	N_ORDER 4		POTENTIAL GTH-BLYP-q6
EPS_DEFAULT	1.0E-12		LEBEDEV_GRID 80
METHOD GAPW			RADIAL_GRID 200
EPS_DEFAULT	1.0E-12		&END KIND
QUADRATURE	GC_LOG		&KIND 01
EPSFIT	1.E-4		ELEMENT O
EPSIS0	1.0E-12	#	BASIS_SET 6-311++G2d2p
EPSRH00	1.E-8		BASIS_SET 6-311G**
LMAXN0	4		POTENTIAL ALL
LMAXN1	6		LEBEDEV_GRID 80
ALPHA0_H	10		RADIAL_GRID 200
&END QS			&END KIND

&END DFT

&END SUBSYS

All-electron Calculations: CP2K vs G03

Energy Functional Minimisation

$$C^* = \arg\min_C \left\{ E(C) : C^T S C = 1 \right\}$$

Standard: Diagonalisation + mixing (DIIS, Pulay, J. Comput. Chem. 3, 556,(1982); iterative diag. Kresse G. et al, PRB, 54(16), 11169, (1996))

Direct optimisation: Orbital rotations (maximally localised Wannier functions)

Linear scaling methods: Efficiency depends on sparsity of P (S. Goedecker, Rev. Mod. Phys. 71, 1085,(1999))

Refined preconditioner, most effective during MD of large systems with well conditioned basis sets

Schiffmann, VandeVondele, JCP 142 244117 (2015)


```
&SCF

EPS_SCF 1.01E-07

&OUTER_SCF

MAX_SCF 20

EPS_SCF 1.01E-07

&END OUTER_SCF

SCF_GUESS RESTART

MAX_SCF 20

&OT

MINIMIZER DIIS

PRECONDITIONER FULL_ALL

&END OT

&END SCF
```

Metallic Electronic Structure

$$E_{\text{band}} = \sum_{n} \frac{1}{\Omega_{\text{BZ}}} \int_{\text{BZ}} \varepsilon_{n\mathbf{k}} \Theta(\varepsilon_{n\mathbf{k}} - E_f) d^3 \mathbf{k} \quad \rightarrow \sum_{n} \sum_{k} w_{\mathbf{k}} \varepsilon_{n\mathbf{k}} \Theta(\varepsilon_{n\mathbf{k}} - E_f) d^3 \mathbf{k}$$

charge sloshing and exceedingly slow convergence

Wavefunction must be orthogonal to unoccupied bands close in energy

We Discontinuous occupancies generate instability (large variations in n(r))

Integration over k-points and iterative diagonalisation schemes

Step function replaced by smooth-varying function (incl. unocc)

$$f_n\left(\frac{\varepsilon_n - E_f}{kT}\right) = \frac{1}{\exp\left(\frac{\varepsilon_n - E_f}{k_{\rm B}T}\right) + 1}$$
 Fermi-Dirac

E no longer variational with respect to fn Mermin functional: minimise the free energy

$$F(T) = E - \sum_{n} k_B T S(f_n) \qquad S(f_n) = -[f_n \ln f_n + (1 - f_n) \ln(1 - f_n)]$$

Any smooth operator that allows accurate $S(f_n)$ to recover the T=0 result

Charge sloshing instabilities: small G, degenerate states, long-range n(r) oscillations

$$n^{\text{new}} = \sum_{i} \alpha_{i} n_{i}^{\text{inp}}$$
 Residual $\mathcal{R}[n^{\text{inp}}] = n^{\text{out}}[n^{\text{inp}}] - n^{\text{inp}}$
 $\left[\mathbf{J}^{-1}\right]^{m} |\Delta \mathcal{R}_{m}\rangle = -|\Delta n_{m}\rangle$ minimise the residual

Kerker : damping oscillations at small G $\left[\mathbf{J}^{-1}\right]^1 = w(G) = \frac{|G|^2}{|G|^2 + \beta}$

Trial density mixed with previous densities and residuals

$$n_{m+1}^{\text{inp}} = n_m^{\text{inp}} + \mathbf{G}^I \mathcal{R}[n_m^{\text{inp}}] + \sum_{i=1}^{m-1} \alpha_i \left(\Delta n_i + \mathbf{G}^I \Delta \mathcal{R}_i \right)$$

Iterative Improvement of the the n(r)

Rhodium: Bulk and Surface

Bulk: 4x4x4

Surface: 6x6 7 layers

Basis	PP	a ₀ [Å]	B[GPa]	E _s [eV/Å ²]	W _f [eV]
3s2p2df	17e	3.80	258.3	0.186	5.11
2s2p2df	9e	3.83	242.6	0.172	5.14
2sp2d	9e	3.85	230.2	0.167	5.20
spd	9e	3.87	224.4	0.164	5.15

576	Cu.	nao=14400.	Nelect.:	=6336.	k	of	eigen	-pairs=	=376	2
	Cu,	$\Pi u o \pm \Pi u o o,$		0000,	<i>'</i> ``			puns		-

nprocs	syevd	syevr	Cholesky				
32	106 (49%)	72 (40%)	38 (21%)				
64	69 (46%)	48 (37%)	34 (26%)				
128	41 (41%)	29 (34%)	23 (28%)				
256	35 (41%)	26 (34%)	24 (32%)				
Syevd: D&C							
Syevr: MRRR							

ELPA (http://elpa.rzg.mpg.de)

Improved efficiency by a two-step transformation and back transformation

Large metallic systems

hBN/Rh(111) Nanomesh 13x13 hBN on 12x12 Rh slab

Slab 12x12 Rh(111) slab, a_=3.801 Å, 1 layer hBN 13x13 4L: 576Rh + 169BN: Nao=19370 ; Nel=11144 7L: 1008Rh + 338BN: Nao=34996 ; Nel=19840

Structure opt. > 300 iterations => 1÷2 weeks on 512 cores

graph./Ru(0001) Superstructure 25x25 g on 23x23 Ru

2116 Ru atoms (8 valence el.) + 1250 C atoms, Nel=21928, Nao=47990 ;

~ several days per structure optimisation

Iannuzzi et al., PRB (2013) Cun, Iannuzzi et al, Nano Letter (2013)

SCF for Metals

&SCF SCF GUESS ATOMIC MAX_SCF 50 EPS_SCF 1.0e-7 EPS_DIIS 1.0e-7 **&SMEAR** METHOD FERMI DIRAC ELECTRONIC_TEMPERATURE 500. &END **SMEAR &MIXING** METHOD BROYDEN_MIXING ALPHA 0.6 BETA 1.0 NBROYDEN 15 &END **MIXING** ADDED_MOS 20 20 &END SCF

&XC &XC_FUNCTIONAL PBE &END &vdW_POTENTIAL DISPERSION_FUNCTIONAL PAIR_POTENTIAL &PAIR_POTENTIAL TYPE DFTD3 PARAMETER_FILE_NAME dftd3.dat REFERENCE_FUNCTIONAL PBE &END PAIR_POTENTIAL &END vdW_POTENTIAL &END XC

		Experiment	2.40	1.42	2.1039	9.09		2.10	
	the stand	12on11 DZ PBE D3	2.469	1.425	2.681	7.907	<mark>9.161</mark> 15	2.18 3	3.69
Vallej	ys ana	T120111DZ PBE rVV10	2.468	1.425	2.677	7.807	9.19 <mark>7</mark> 94	2.18 3	3.61
		12on11 DZ BEEF	2.456	1.418	2.703	9.138	9.63944	2.23 3	3.77
	hill	12on11 DZ optB88 DRSLL	2.467	1.424	2.690	8.290	9.23473	2.24 3	3.69
valley		12on11 DZ optPBE rVV10	2.468	1 .425	95.9B\$	ep.q.96	9.19794	2.16 3	3.55
		12on11 TZ PBE rVV10	2.468	1.425	2.677	7.807	9.19794	2.18 3	3.61
	******	25on23 DZ PBE rVV10	2.468	1.425	<u>R</u> ø7 \$ 1	aþ.807	9.19794	2.18 3	3.55
	*******	25on23 DZ revPBE D2	2.471	1.426	2.672	7.52	9.08756	2.21 3	3.22

Method	h_{\min} (Å)	Δh (Å)
$LEEM^5$	1.5 ± 0.1	-
$LEED^{18}$	2.1 ± 0.2	1.5 ± 0.2
$SXRD^{21}$	-	0.82 ± 0.15
HAS^{19}	-	0.17 ± 0.03

Issues: binding distance corrugation height distribution

X-ray Photoemission Spectra

continuous distribution valley-to-hill

Gaussian-fitted line shape Two distinguished C1s components valley/hill boundary not clearly distinguished

X-ray Standing Waves

Exploit spatial modulation of XSW field (interference) by scanning through the Bragg condition: spatial resolution and chemical sensitivity

Silva, Iannuzzi et al., JPC C (2018)

Theoretical Spectroscopy

Core Binding Energies vs XPS

Consider possible excited states @ higher level of theory

 $\&\Delta SCF$ takes into account the relaxation

Transition operator method, according to Slater's transition state idea

$$E(\lambda) = \sum_{k} \lambda^{k} E_{k} = E(0) + \lambda E_{1} + \frac{1}{2} \lambda^{2} E_{2} + \dots$$

Slater Transition State

Emptying the state (occupation): energy change as finite difference

$$\Delta E = E(1) - E(0) = E_1 + E_2 + E_3 + \dots$$

$$F(\lambda) = \frac{\partial E}{\partial \lambda} = E_1 + 2\lambda E_2 + 3\lambda^2 E_3 + \dots$$

$$-arepsilon_k = F(rac{1}{2}) = E_1 + E_2 + rac{3}{4}E_3 + \dots$$
 Error in E3

Janak's theorem: KS energy computed with the modified Hamiltonian

$$\mathcal{H}(f_k = 1/2)$$

X-ray Absorption Fine Structure

- * Characterization of materials by synchrotron radiation
- * X-ray spectra connect to the core-electron excited states (role of core hole)
- ***** Element specific probe:

- electronic structure in situ
- time resolution (fs)

- no long range order required
- 📄 imaging

Interpretation of experiment, structures refinement (signal assignment), understanding of physical-chemical properties of materials

C K-edge for dífferent amino acids

Core Hole Creation and Decay

XES/NEXAFS local probes for electronic and geometric properties

Unoccupied levels, symmetry resolved

One step process Finale state: core-hole

Instantaneous configuration in dynamic systems

Occupied orbitals

Two step process Final state : valence-hole

Binding of adsorbed molecules

Interaction X-ray with matter

* Interaction with an electromagnetic field (incoming radiation)

$$\mathbf{A}(\mathbf{r},t) = A_0 \mathbf{e} \cos\left(\mathbf{k} \cdot \mathbf{r} - \omega t\right)$$

 \clubsuit Linear perturbation term (time dependent perturbations) V(z)

$$V(t) = \frac{e}{mc} \mathbf{A} \cdot \mathbf{p}$$

* Induced transition: probability according to Fermi golden rule

$$P_{if} = \frac{\pi e^2}{2\hbar m^2 c^2} A_0^2 |\langle f| e^{i\mathbf{k}\cdot\mathbf{r}} \mathbf{e} \cdot \mathbf{p} |i\rangle|^2 \rho_i(E)$$

 $kr_s=rac{2\pi}{\lambda}r_s\ll 1$

$$P_{if} \propto \left| \langle f
ight| \left. \hat{e} \cdot \hat{p} \left.
ight| i
ight
angle
ight|^2$$
 velocity form

***** Equivalent operators

$$\hat{p} = -i\hbar \nabla = \frac{im}{\hbar} [\hat{H}, \hat{r}]$$
 $P_{if} \propto (E_f - E_i) |\langle f| \hat{\mu} |i\rangle|^2$ length form

<u>∆sc</u>f

Ground state KS virtual orbitals

$$IP_i \neq -\varepsilon_i \qquad \Delta E(\mathbf{1s} \to \pi^*) \neq \varepsilon_{\pi^*} - \varepsilon_{\mathbf{1s}}$$

Parametric SCF solution $\tilde{E}[n(\{f_i\})]$ $n(\mathbf{r}) = \sum_i f_i |\psi_i(\mathbf{r})|^2$

$$IP_{i=1} = \tilde{E}(\mathbf{0}_{1}, \mathbf{1}_{2}..., \mathbf{1}_{N}, ..., \mathbf{0}_{r}...) - \tilde{E}(\mathbf{1}_{1}, \mathbf{1}_{2}..., \mathbf{0}_{N}, ..., \mathbf{0}_{r}, ...)$$

$$\Delta E(\mathbf{i} \to \mathbf{r}) = \tilde{E}(\mathbf{1}_{1}, \mathbf{1}_{2}..., \mathbf{0}_{\mathbf{i}}, ..., \mathbf{1}_{N}, ..., \mathbf{1}_{\mathbf{r}}, ...) - \tilde{E}(\mathbf{1}_{1}, \mathbf{1}_{2}..., \mathbf{1}_{i}, ..., \mathbf{0}_{r}, ...)$$

* Numerically not stable : difference between 2 SCF calculations

Higher excited states states (collapse)

* Not orthogonal MOs sets $P_{if} \propto |\langle f| {f e} \cdot {f p} |i
angle|^2
ho_i(E)$

The Transition Potential Method

Independent-Particle Approach

* Direct calculation of the excitation energies from the solution of KS equation with a modified core potential on the absorbing atom

$$IP_i = \int_1^0 df_i \frac{\partial \tilde{E}(\{f_j\})}{\partial f_i} \simeq \left(\frac{\partial \tilde{E}(\{f_j\})}{\partial f_i}\right)_{f_i = \frac{1}{2}} = \varepsilon_i \left(\frac{1}{2}\right)$$

Relaxation effects up to second order in $\partial E/\partial f$: balance between initial and final state contributions

$$\hbar\omega_{if} = \varepsilon_f^T - \varepsilon_i^T \qquad I_{if} = \frac{2}{3}\omega_{if}|\langle \psi_i^T | \bar{\mu} | \psi_f^T \rangle|^2$$

Errors/Corrections

Single particle picture (hole/electron correlation)

* Basis sets flexible to relaxation to describe Rydberg states; Double basis set approach [19s,19p,19d]

*Using TP: error due to higher order contributions to the core relaxation energy

***** Energy corrections based on \triangle SCF

$$\Delta IP = \varepsilon_{1s}^T \left(\frac{1}{2}\right) - IP_{\Delta SCF}$$

$$\Delta (1s \to \pi^*) = \left(\varepsilon_{\pi*} - \varepsilon_{1s}^T \left(\frac{1}{2}\right)\right) - \Delta E_{\Delta SCF}$$

Relativistic correction as rigid, species-dependent translation

The Core Hole

The actual location of the excited electron in the final state has a relative small effect on relaxation of the orbitals

The focus is set on the core hole

Only one SCF calculation per core hole for the entire spectrum

AE-TP in Condensed Matter

Ground state SCF and localization of the occupied orbitals

* Character of the Core states

$$\tilde{\psi}_{i}(\mathbf{r}) = \sum_{\mu} \tilde{C}_{\mu i} \varphi_{\mu}(\mathbf{r}) \qquad \stackrel{O_{1s}, n}{\Longrightarrow} \qquad Max_{i} \quad \left\{ \left\langle \tilde{\psi}_{i}^{O_{n}} | \varphi_{O, 1s}^{STO} \right\rangle \right\} \quad \Longrightarrow \quad \text{j-th state}$$

Half Core Hole / Full Core Hole / any core occupation (LSD)

$$f_j = \frac{1}{2}, 0$$

SCF with modified occupation numbers

Concernence of the selecity form the velocity form

$$I_{if} = |\langle \psi_i^T | \nabla | \psi_f^T \rangle|^2$$

&XAS

&SCF EPS_SCF 1.0E-4 MAX_SCF 200 **&SMEAR ON** METHOD FERMI_DIRAC ELECTRONIC_TEMPERATURE [K] 300 &END &MIXING METHOD BROYDEN_MIXING ALPHA 0.1 BETA 1.5 **NBUFFER 8 &END MIXING** &END SCF METHOD TP_HH **DIPOLE_FORM VELOCITY** STATE_TYPE 1s STATE_SEARCH 10 # mult. matches ATOMS LIST 1 ADDED_MOS 1000 &LOCALIZE &END

&PRINT & PROGRAM RUN INFO &END **&RESTART** FILENAME ./root &EACH XAS_SCF 15 &END ADD_LAST NUMERIC **&END** &XAS_SPECTRUM FILENAME ./root **&END** &XES_SPECTRUM FILENAME ./root **&END** &END

Broadening and Shift

Convolution using Gaussian functions with adapted width

$$f(x) = I_{\rm SL} \frac{1}{\sigma \sqrt{2\pi}} e^{(x - x_{\rm SL})^2 / (2\sigma^2)}$$

$$\sigma = \begin{cases} \sigma_{\min} & : & \omega_{if} < E_{\min} \\ \sigma_{\min} + (\omega_{if} - E_{\min}) \cdot \frac{\sigma_{\max} - \sigma_{\min}}{E_{\max} - E_{\min}} & : & E_{\min} < \omega_{if} < E_{\max} \\ \sigma_{\max} & : & E_{\max} < \omega_{if} \end{cases}$$

NEXAFS for Hexagonal Ice

All O donating and accepting 2 h-bonds

Charge redistribution (no antibonding OH)

Large post-edge band (emptied lone-pairs)

Size of the Simulation Cell

Different Core State Occupation

Not only the **absolute position** but also the **shape** of the spectrum might change

Liquid Water

Sampling over pre-generated trajectories: 20 ps, spectrum every 0.5 ps

Nuclear Magnetic Resonance

Measure of the Larmor precession frequency of the nuclear spin within a magnetic field

net nuclear spin magnetisation in B

Interaction between **B** and a spin 1/2 nucleus with spin angular momentum $E=-oldsymbol{\mu}\cdot\mathbf{B}$

$$\hbar\omega = \Delta E = -\gamma\hbar B$$

in diamagnetic materials the Bind arises only from the induced orbital currents j

$$\mathbf{B} = \mathbf{B}_0 + \mathbf{B}_{ind}$$
 $\mathbf{B}_{ind} = -\overleftarrow{\sigma}_k \mathbf{B}_0$

Chemical Shielding

radio frequencies signals from ensemble of sites highly sensitive to atomic structure and dynamics

$$\mathbf{B}_{\text{ind}}(\mathbf{r}) = \frac{1}{c} \int \, \mathrm{d}^3 r' \mathbf{j}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

applied B⁰ along ×
$$\sigma_{xy}(\mathbf{R}_A) = \frac{1}{c} \int_{\Omega} \left[\frac{\mathbf{r} - \mathbf{R}_A}{|\mathbf{r} - \mathbf{R}_A|^3} \times \mathbf{j}_x(\mathbf{r}) \right]_y \mathrm{d}^3 r$$

chemical shift w.r.t. reference
$$\delta = \frac{\nu - \nu_{\rm ref}}{\nu_{\rm ref}} (\times 10^6) \approx (\sigma_{\rm ref} - \sigma) \qquad \sigma = \frac{1}{3} {
m Tr}[\overleftrightarrow{\sigma}]$$

Representation by means of a vector potential and a Gauge function

$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}(\mathbf{r}) = \mathbf{\nabla} \times [\mathbf{A}(\mathbf{r}) + \mathbf{\nabla} \Phi_g(\mathbf{r})]$$

$$\mathbf{A}(\mathbf{r}) = -\frac{1}{2}\mathbf{r} \times \mathbf{B}$$
 $\Phi_g(\mathbf{r}) = \frac{1}{2}\mathbf{r} \cdot \mathbf{R}_b \times \mathbf{B}$

The Gauge function translates the origin, it does not change the physics, but affects the numerical accuracy

Minimal substitution in the Hamiltonian $\hat{\mathbf{p}} \rightarrow \hat{\mathbf{p}} - e\mathbf{A}(\hat{\mathbf{r}})$

$$\mathbf{H} = \frac{1}{2m} \left(\mathbf{p} - e\mathbf{A}(\mathbf{r}) \right)^2 + \mathcal{V}$$

$$\mathbf{H}^{\text{pert}} = -\frac{e}{m}\hat{\mathbf{p}} \cdot \mathbf{A}(\hat{\mathbf{r}}) + \frac{e^2}{2m}\mathbf{A}(\hat{\mathbf{r}}) \cdot \mathbf{A}(\hat{\mathbf{r}}) \qquad \qquad \hat{\mathbf{p}} = -i\hbar\nabla$$
1st order
imaginary

Variational principle at second order in the DFT framework

$$\mathcal{E}_{\mathrm{tot}} = \mathcal{E}_{\mathrm{KS}}^{(0)} + \lambda \mathcal{E}^{\mathrm{pert}}$$
 static perturbation

 $E_{\text{tot}} = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \dots \qquad \qquad \psi_i = \psi_i^{(0)} + \lambda \psi_i^{(1)} + \lambda^2 \psi_i^{(2)} + \dots$

Expansion to 2nd order and minimisation: linear response $E^{(2)}$ variational in $\psi^{(1)}$

$$E^{(2)} = \sum_{ij} \left\langle \psi_i^{(1)} \left| H^{(0)} \delta_{ij} - \left\langle \psi_j^{(1)} \right| H^{(0)} |\psi_i^{(0)}\rangle \right| \psi_j^{(1)} \right\rangle + \frac{1}{2} \int \frac{\partial^2 \mathcal{E}_{\text{Hxc}}}{\partial n(\mathbf{r}') \partial n(\mathbf{r})} n^{(1)}(\mathbf{r}) n^{(1)}(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$$
$$+ \sum_i \left[\left\langle \psi_i^{(1)} \right| \frac{\partial \mathcal{E}^{\text{pert}}}{\partial \left\langle \psi_i^{(0)} \right|} + \frac{\partial \mathcal{E}^{\text{pert}}}{\partial \left| \psi_i^{(0)} \right\rangle} |\psi_i^{(1)}\rangle \right]$$

$$H^1 = \hat{\mathbf{p}} \cdot (\hat{\mathbf{r}} - \mathbf{R}_g) \times \mathbf{B} = [(\hat{\mathbf{r}} \times \hat{\mathbf{p}}) - (\mathbf{R}_g \times \hat{\mathbf{p}})] \cdot \mathbf{B}$$

perturbation Hamiltonian

$$-i\sum_{i\nu} \left(H^{0}_{\mu\nu}\delta_{ij} - S_{\mu\nu} \langle \psi^{0}_{i} | H | \psi^{0}_{j} \rangle \right) C^{1}_{\nu i} = \sum_{\nu} H^{1}_{\mu\nu(j)} C^{0}_{\nu j}$$

Perturbation operator split into three terms

x-component of current density j induced by B^o applied along y

$$\begin{split} j_{xy}(\mathbf{r}) &= -\frac{1}{2c} \sum_{i} \sum_{\mu\nu} \left[C^{0}_{\mu i} \left(C^{\mathbf{L}_{y}}_{\nu i} + (\mathbf{R}_{g} - \mathbf{d}_{i})_{x} C^{\mathbf{p}_{z}}_{\nu i} - (\mathbf{R}_{g} - \mathbf{d}_{i})_{z} C^{\mathbf{p}_{x}}_{\nu i} - C^{\Delta_{iy}}_{\nu i} \right) \\ &\times ([\nabla_{x} \varphi_{\mu}(\mathbf{r})] \varphi_{\nu}(\mathbf{r}) - \varphi_{\mu}(\mathbf{r}) [\nabla_{\mathbf{x}}(\varphi_{\nu}(\mathbf{r}))])] \\ &+ (\mathbf{r} - \mathbf{R}_{g})_{z} n(\mathbf{r}) \quad \text{diamagnetic} \end{split}$$

Gauge invariance in molecular and periodic systems

CSGT $\mathbf{R}_g = \mathbf{r}$ comp
convertIGAIM $\mathbf{R}_g = \mathbf{R}_I$ individu

computationally convenient, slow converging with basis set quality

individual gauge for atoms in molecules

Sebastiani, Parrinello, JPC, **105**, 1951 (2001) Weber, Iannuzzi, Giani, Hutter, Declerck, Waroquier, JCP, **131**, 014106 (2009)

applied B^0 along x

$$\sigma_{xy}(\mathbf{R}_A) = \frac{1}{c} \int_{\Omega} \left[\frac{\mathbf{r} - \mathbf{R}_A}{|\mathbf{r} - \mathbf{R}_A|^3} \times \mathbf{j}_x(\mathbf{r}) \right]_y \mathrm{d}^3 r$$

 $\mathbf{j}(\mathbf{r}) = \tilde{\mathbf{j}}(\mathbf{r}) + \sum_{A} \left(\mathbf{j}_{A}(\mathbf{r}) - \tilde{\mathbf{j}}_{A}(\mathbf{r}) \right)$

GAPW induced current density

from soft term in reciprocal space

$$ilde{\mathbf{B}}^{ ext{ind}}(\mathbf{G}
eq 0) = -\mu_0 i rac{\mathbf{G}}{|\mathbf{G}|^2} imes ilde{\mathbf{j}}(\mathbf{G})$$

 $ilde{\mathbf{B}}^{ ext{ind}}(\mathbf{G} = 0) = \kappa \ \chi \ \mathbf{B}^{ ext{ext}} \qquad \qquad \chi_{xy} = rac{2\pi}{\Omega} \int \left[\mathbf{r} imes ilde{\mathbf{j}}_x(\mathbf{r})\right]_y \mathrm{d}^3 r$

from local terms by integration on spherical grids

$$\sigma_{xy}^{
m loc}(\mathbf{R}_A) = rac{1}{c} \sum_B \int_{\Omega_B} \left[rac{\mathbf{r} - \mathbf{R}_A}{|\mathbf{r} - \mathbf{R}_A|^3} imes \left(\mathbf{j}_{xB}(\mathbf{r}) - \widetilde{\mathbf{j}}_{xB}(\mathbf{r})
ight)
ight]_y \mathrm{d}^3 r$$

Weber, Iannuzzi, Giani, Hutter, Declerck, Waroquier, JCP, 131, 014106 (2009)

NMR Input

Linear Response run-type

&GLOBAL PROJECT PRINT_LEVEL RUN_TYPE &END GLOBAL

Ground State GAPW

\${PROJECT_NAME} LOW LINEAR_RESPONSE

GAPW kind

&KIND N LEBEDEV_GRID 100 RADIAL_GRID 200 BASIS_SET aug-cc-pVQZ POTENTIAL ALL &END KIND

NMR Chemical Shift

&PROPERTIES &LINRES &LOCALIZE &END OPT METHOD CG LINESEARCH 2PNT PRECONDITIONER FULL ALL MAX_SCF 2000 **&CURRENT** GAUGE ATOM ORBITAL CENTER COMMON **&END CURRENT &NMR** INTERPOLATE_SHIFT T **&PRINT &CHI TENSOR** &END CHI_TENSOR **&END PRINT** &END &END &END

&DFT BASIS_SET_FILE_NAME EMSL BASIS SETS POTENTIAL FILE NAME POTENTIAL &MGRID CUTOFF 300 &END MGRID &0S METHOD GAPW &END QS **&SCF** &OUTER_SCF MAX SCF 200 &END OUTER SCF MAX SCF 20 EPS SCF 10E-6 &0T ALGORITHM IRAC PRECONDITIONER FULL_ALL &END OT **&END SCF** &XC **&XC FUNCTIONAL** BLYP &END XC_FUNCTIONAL &END XC **&END DFT**

NMR Output for SiH4

Converged GAPW SCF

```
Total electronic density (r-space):
                                           -11.6551998133
                                                                 6.3448001867
Total core charge density (r-space):
                                            18.000000000
                                                                 0.000000000
 Hard and soft densities (Lebedev):
                                                               -60.9676446784
                                    -67.3124445208
Total Rho_soft + Rho1_hard - Rho1_soft (r-space):
                                                               -17.9999996557
Total charge density (r-space):
                                                                 0.000003443
Total Rho_soft + Rho0_soft (g-space):
                                                                 0.000003075
Overlap energy of the core charge distribution:
                                                             0.00000011310807
 Self energy of the core charge distribution:
                                                          -131.30230308020512
 Core Hamiltonian energy:
                                                          -159.90960164160288
Hartree energy:
                                                            32.53453281991028
 Exchange-correlation energy:
                                                            -5.66831828118873
GAPW| Exc from hard and soft atomic rho1:
                                                           -16.66150292615432
GAPW| local Eh = 1 center integrals:
                                                           -10.87514648571372
outer SCF iter = 2 RMS gradient = 0.35E-05 energy =
                                                             -291.8823394818
 outer SCF loop converged in 2 iterations or
                                                23 steps
ENERGY | Total FORCE_EVAL ( QS ) energy (a.u.):
                                                          -291.882339481846373
```


Localization procedure through Jacobi rotations

LOCALIZE | The spread relative to a set of orbitals is computed LOCALIZE | Orbitals to be localized: All the occupied LOCALIZE | Spread defined by the Berry phase operator LOCALIZE | The optimal unitary transformation is generated by the Jacobi algorithm

Localization of the ground state orbitals before starting the linear response calculation Localization by iterative Jacobi rotation

Iteration	Tolerance		
100	0.2560E-01		
200	0.1556E-01		
300	0.6506E-02		
400	0.1981E-02		
500	0.8639E-03		
600	0.3288E-03		
Localization for spin	1 converged in 698	iterations	
Total Spread (Berry) x,y,z:	1.1135942650	1.1135229959	1.1133052793

WANNIER CENTERS for spin 1

			- Centers			Spreads -	
state	1	-0.222895	0.146450	0.058049	0.541470	0.000000	0.00000
state	2	0.000107	-0.064397	-0.264849	0.541498	0.000000	0.00000
state	3	0.222716	0.146673	0.058175	0.541470	0.000000	0.00000
state	4	0.00000	0.000121	0.000245	0.140158	0.000000	0.00000
state	5	0.000072	-0.228327	0.149401	0.541477	0.000000	0.00000
state	6	-1.772371	-1 . 183928	-0.406835	1.888384	0.000000	0.00000
state	7	0.000093	0.608045	2.082470	1.887723	0.00000	0.00000
state	8	0.000211	1.760315	-1.267771	1.887975	0.000000	0.00000
state	9	1.772063	-1.184376	-0.406863	1.888382	0.000000	0.00000

Linear Response Initialization

	START LINRES	CALCULATION	
	Properties to be Calulated:		
LINRES LINRES LINRES LINRES	Optimization algorithm Line Search Preconditioner	NMR Chemi	cal Shift LOCALIZED PSI0 Conjugate Gradients 2pnt FULL ALL
LINRES	EPS_SCF		1.0E-05
LINRES	Max number of iterations	per SCF cycle	2000
Total e -65. -3. -0.	nergy ground state: 49055205 -5.05920132 47809942 -0.48735526 30804975	-3.47810739 -0.30828056	-291.88233948447117 -3.47810596 -0.30810235
	*** Start current	Calculation ***	
	Initialization of the curre	nt environment	
CURRENT CURRENT CURRENT CURRENT	Gauge used ATOM Orbital center used COMMON Common center 0.000000 (Calculation of the p and (0.000000 0.00000 r-d)xp operators	0 applied to psi0

NMR Output for SiH4

Response calculation for first perturbation operator

*** Self consistent optimization of the response wavefunctions ***

Response to the perturbation operator P_x

Iter.	Method	Stepsize	G-norm	Convergence	Total energy
10	LR LS	0.99E-01	0.000000000	0.0323894903	 -2.2638501245
20	LR LS	0.12E+00	0.000000000	0.0077609426	-2.6500765218
30	LR LS	0.48E-01	0.000000000	0.0077044886	-2.6794773033
40	LR LS	0.15E+00	0.000000000	0.0050879317	-2.7024052890
50	LR LS	0.60E+00	0.000000000	0.0074222310	-2.7361724629
60	LR LS	0.55E-01	0.000000000	0.0036544263	-2.7922066072
70	LR LS	0.68E-01	0.000000000	0.0027598118	-2.7965811305
80	LR LS	0.90E-01	0.000000000	0.0011411853	-2.7983145616
90	LR LS	0.11E+00	0.000000000	0.0008189226	-2.7988545411
100	LR LS	0.72E-01	0.000000000	0.0005977973	-2.7991253972
110	LR LS	0.73E-01	0.000000000	0.0003155523	-2.7991931045
120	LR LS	0.64E-01	0.000000000	0.0002261754	-2.7992267386
130	LR LS	0.76E-01	0.000000000	0.0000928637	-2.7992365112
140	LR LS	0.62E-01	0.000000000	0.0000783777	-2.7992406728
150	LR LS	0.94E-01	0.000000000	0.0000318069	-2.7992417209
160	LR LS	0.90E-01	0.000000000	0.0000245090	-2.7992422317
	The SCF	has converged in	167 iterations		

Second order energy $P_x = -0.2799242338698460E+01$ Store the psil for the calculation of the response current density

Isolated Adenine

Geometry optimised in gas phase : BLYP/6-31G(dp)

		CP2K IGAIM BLYP/cc-p-VQZ	(Id BLYP /cc-pVQZ	GO3 GAIM BLYP /aug-cc-pVZ5	CP CS BLYP/	MD GT 200Ry	
	C_2	164	164	166	136	(168)	DD
	$\overline{C_4}$	159	159	162	130	(161)	corrected
D	C_5	128	128	130	93	(124)	
5	C_6	163	163	165	134	(166)	
	C_8	141	141	143	115	(146)	
	H_2	8.4	8.4	8.5	7.4		
	H_8	7.5	7.5	7.7	7.0		
	N_1	-134	-134	-135	-143	(-118)]
	N_3	-142	-142	-146	-152	(-127)	
	N ₆	-319	-319	-327	-285	(-332)	
	N_7	-129	-129	-132	-154	(-129)	
	N ₉	-235	-235	-240	-217	(-240)	
	C _t	177	177	175	7		
TMS	H_t	31.3	31.3	31.3	30.6	ex	rernal
MeNO ₂	N _n	-159	-159	-166	-299	rete	erence
benz.	C_b			37	-99		
pyrid.	N_{py}			-119	-227		
pyrrol	N_{pr}			77	-79		
alinine	N _a			171	-8		

PP correction

 $\delta(X) = \sigma(X_{ ext{ref}}) - \sigma(X) + \delta(X_{ ext{ref}})$

Hydrated Adenine

QM/MM with 827 H2O: snapshot from classical MD

QM water for proper description of solute/solvent h-bonds

		CP2K IGAIM BLYP/cc-p-VQZ		
	ISO	W0	W3	W5
C ₂	164	164	166	166
C_4	148	148	148	148
C ₅	120	120	120	120
C ₆	160	160	159	159
C ₈	145	152	154	154
H_2	7.8	7.8	7.8	7.9
H_8	7.7	8.3	8.2	8.4
N_1	-115	-129	-128	-125
N ₃	-127	-147	-144	-145
N ₆	-330	-330	-318	-317
N_7	-121	-144	-147	-149
N ₉	-249	-237	-226	-223

Electron Paramagnetic Resonance

$$ho^s(\mathbf{r}) =
ho^lpha(\mathbf{r}) -
ho^eta(\mathbf{r})$$
 spin density

$$g_{xy} = g_{xy}^{\rm Z} + \Delta g_{xy}^{\rm ZKE} + \Delta g_{xy}^{\rm SO} + \Delta g_{xy}^{\rm SOO}$$

$$g_{xy}^{\mathrm{Z}} = g_e \delta_{xy}$$
 ge : free el. g value

$$\Delta g_{xy}^{\text{ZKE}} = -\frac{g_e}{c^2} \left(T^{\alpha} - T^{\beta} \right) \delta_{xy} \qquad \text{T: unperturbed kinetic energy}$$

$$\Delta g_{xy}^{\rm SO} = \frac{g_e - 1}{c} \int_{\Omega_C} \left[\mathbf{j}_x^{\alpha} \times \nabla V_{\rm eff}^{\alpha} - \mathbf{j}_x^{\beta} \times \nabla V_{\rm eff}^{\beta} \right] d^3 \mathbf{r} \, \mathbf{V}_{\rm eff} : \text{effective pot.}$$

$$\Delta g_{xy}^{\rm SOO} = 2 \int_{\Omega_C} B_{xy}^{\rm corr}({\bf r}) \rho^s({\bf r}) d^3 {\bf r} \qquad \begin{array}{l} {\rm B}^{\rm corr}: {\rm magnetic field from induced}\\ {\rm current density}\end{array}$$

