Padeborn, August 28th 2018

E月

CP2K:GAPW \& Spectroscopy

> Marcella Iannuzzi
> University of Zurich

Basis set Representation

KS matrix formulation when the wavefunction is expanded into a basis

System size $\left\{\mathrm{Nel}_{\mathrm{el}}, \mathrm{M}\right\}, \mathrm{P}[\mathrm{M} \times \mathrm{M}], C[M \times N]$

$$
\begin{aligned}
& \psi_{i}(\mathbf{r})=\sum_{\alpha} C_{\alpha i} \phi_{\alpha}(\mathbf{r}) \\
& n(\mathbf{r})=\sum_{i} \sum_{\alpha \beta} f_{i} C_{\alpha i} C_{\beta i} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r})=\sum_{\alpha \beta} P_{\alpha \beta} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r}) \\
& \mathbf{P}=\mathbf{P S P}
\end{aligned}
$$

Variational principle Constrained minimisation problem

KS total energy

$$
E\left[\left\{\psi_{i}\right\}\right]=T\left[\left\{\psi_{i}\right\}\right]+E^{\mathrm{ext}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n]+E^{I I}
$$

Matrix formulation of the KS equations

$$
\mathbf{K}(C) \mathbf{C}=\mathbf{T}(C)+\mathbf{V}_{\text {ext }}(C)+\mathbf{E}^{\mathrm{H}}(C)+\mathbf{E}^{\mathrm{xc}}(C)=\mathbf{S C} \varepsilon
$$

classes of Basis sets

隠 Extended basis sets，PW：condensed matter
Localised basis sets centred at atomic positions，GTO

Idea of GPW：auxiliary basis set to represent the density

采 Mixed（GTO＋PW）to take best of two worlds，GPW
黄 Augmented basis set，GAPW：separated hard and soft density domains

GPW Ingredients

$$
\begin{aligned}
& \text { linear scaling KS matrix computation for GTO } \\
& \text { 潾 Gaussian basis sets (many terms analytic) } \\
& \psi_{i}(\mathbf{r})=\sum_{\alpha} C_{\alpha i} \phi_{\alpha}(\mathbf{r}) \quad \phi_{\alpha}(\mathbf{r})=\sum_{m} d_{m \alpha} g_{m}(\mathbf{r}) \quad g_{m}(\mathbf{r})=x^{m_{x}} y^{m_{y}} z^{m_{z}} e^{-\alpha_{m} r^{2}} \\
& \text { 彩 Pseudo potentials } \\
& \text { 粦 Plane waves auxiliary basis for Coulomb integrals } \\
& \text { 粦 Regular grids and FFT for the density } \\
& \text { 溇 Sparse matrices (KS and P) } \\
& \text { 帚 Efficient screening }
\end{aligned}
$$

Basis Set library

GTH_BASIS_SETS : BASIS_MOLOPT : EMSL_BASIS_SETS

12211

GTO in CP2K

汬 The repository contains several GTO libraries

```
cp2k/data/
ALL BASIS SETS
ALL_POTENTIALS
BASIS_ADMM
BASIS_ADMM_MOLOPT
BASIS_LRIGPW_AUXMOLOPT ECP_POTENTIALS
BASIS_MOLOPT
BASIS_MOLOPT_UCL
```

```
BASIS_RI_cc-TZ
```

BASIS_RI_cc-TZ
BASIS_SET
BASIS_SET
BASIS_ZIJLSTRA
BASIS_ZIJLSTRA
DFTB
DFTB

```
EMSL_BASIS_SETS
```

EMSL_BASIS_SETS
GTH_BASIS_SETS

```
GTH_BASIS_SETS
```

GTH_POTENTIALS
HFX_BASIS
HF_POTENTIALS
MM_POTENTIAL
NLCC_POTENTIALS
POTENTIAL
README

```
dftd3.dat
```

dftd3.dat
nm12_parameters.xml
nm12_parameters.xml
rVV10_kernel_table.dat
rVV10_kernel_table.dat
t_c_g.dat
t_c_g.dat
t_sh_p_s_c.dat
t_sh_p_s_c.dat
vdW_kernel_table.dat

```
vdW_kernel_table.dat
```

Tools for the optimisation of GTO basis sets are available in cp2k, based on atomic and molecular electronic structure calculations

Generate GTO basis set

```
&ATOM
    ELEMENT Ru
    RUN_TYPE BASIS_OPTIMIZATION
    ELECTRON_CONFIGURATION CORE 4d7 5s1
    CORE [Kr]
    MAX_ANGULAR_MOMENTUM 2
    &METHOD
        METHOD_TYPE KOHN-SHAM
        &XC
            &XC_FUNCTIONAL
            &PBE
            &END
            &END XC_FUNCTIONAL
        &END XC
    &END METHOD
    &OPTIMIZATION
        EPS_SCF 1.e-8
    &END OPTIMIZATION
    &PP_BASIS
        NUM_GTO 6 6 6
        S_EXPONENTS 3.73260 1.83419 0.80906 0.34515
0.13836 0.04967
    P_EXPONENTS 3.73260 1.83419 0.80906 0.34515
0.13836 0.04967
    D_EXPONENTS 3.73260 1.83419 0.80906 0.34515
0.13836 0.04967
    EPS_EIGENVALUE 1.E-14
    &END PP_BASIS
```

```
    &POTENTIAL
    PSEUDO_TYPE GTH
    &GTH_POTTENTIAL
    0 0 7
    0.61211332 1 5.04489332
    3
    0.6421504 2 4.625563-1.8033490
                                    2.32811359
    0.6793665 2 3.233952 -2.42101064
                                    2.86457842
    0.3805972 2-15.5316 13.58045054
                                    -15.39878349
    &END GTH_POTENTIAL
    CONFINEMENT 0.5 20.00 4.5
&END POTENTIAL
&POWELL
    ACCURACY 1.e-8
    STEP_SIZE 1.0
    &END POWELL
&END ATOM
```


GTHPPP for 0: 6 val. el.

```
&ATOM
```

```
ELEMENT 0
```

ELEMENT 0
RUN_TYPE PSEUDOPOTENTIAL_OPTIMIZATION
RUN_TYPE PSEUDOPOTENTIAL_OPTIMIZATION
ELECTRON_CONFIGURATION [He] 2s2 2p4
ELECTRON_CONFIGURATION [He] 2s2 2p4
CORE [He]
CORE [He]
MAX_ANGULAR_MOMENTUM 2
MAX_ANGULAR_MOMENTUM 2
COULOMB_INTEGRALS ANALYTIC
COULOMB_INTEGRALS ANALYTIC
EXCHANGE_INTEGRALS ANALYTIC
EXCHANGE_INTEGRALS ANALYTIC
\&METHOD
\&METHOD
METHOD_TYPE KOHN-SHAM
METHOD_TYPE KOHN-SHAM
RELATIVISTIC DKH(2)
RELATIVISTIC DKH(2)
\&XC
\&XC
\&XC_FUNCTIONAL PBE0
\&XC_FUNCTIONAL PBE0
\&END XC_FUNCTIONAL
\&END XC_FUNCTIONAL
\&END XC
\&END XC
\&END METHOD
\&END METHOD
\&OPTIMIZATION
\&OPTIMIZATION
EPS_SCF 1.e-10
EPS_SCF 1.e-10
\&END
\&END
\&PRINT
\&PRINT
\&BASIS_SET
\&BASIS_SET
\&END
\&END
\&END

```
&END
```

```
&AE_BASIS
    BASIS_TYPE GEOMETRICAL_GTO
&END AE_BASIS
&PP_BASIS
    BASIS_TYPE GEOMETRICAL_GTO
&END PP_BASIS
&POTENTIAL
    PSEUDO_TYPE GTH
    &GTH_POTENTIAL
        2 4
        0.24455430 2 -16.66721480 2.48731132
        2
        0.22095592 1 18.33745811
        0.21133247 0
    &END GTH_POTENTIAL
&END POTENTIAL
&POWELL
    ACCURACY 1.e-10
    STEP_SIZE 0.5
    WEIGHT_PSIR0 0.1
&END
\&END ATOM
```


PP Library

GTH_POTENTIALS

$$
\begin{array}{ccc}
N_{\mathrm{el}}(s) & N_{\mathrm{el}}(p) & N_{\mathrm{el}}(d) \\
r_{\mathrm{loc}}^{\mathrm{PP}} & N_{C} & C_{1}^{\mathrm{PP}} \ldots \\
N_{p} & & C_{N_{C}}^{\mathrm{PP}} \\
r_{1} & n_{\mathrm{nl}}^{1} & \left\{h_{i j}^{1}\right\}_{i j=1 \ldots n^{1}} \\
r_{2} & n^{2} & \left\{h_{i j}^{2}\right\}_{i j=1 \ldots n^{2}}
\end{array}
$$

Few parametrers

```
C GTH-BLYP-q4
    2
    0.33806609 2 -9.13626871 1.42925956
    2
    0.30232223 1 9.66551228
    0.28637912 0
#
N GTH-BLYP-q5
    2 3
    0.28287094 2 -12.73646720 1.95107926
    2
    0.25523449 1 13.67893172
    0.24313253 0
```

```
```



```
```


Al GTH-PBE-q3
Al GTH-PBE-q3
2 1
2 1
0.45000000 1 -7.55476126
0.45000000 1 -7.55476126
2
2
0.48743529 2 6.95993832 -1.88883584
0.48743529 2 6.95993832 -1.88883584
2.43847659
2.43847659
0.56218949 1 1.86529857

```
```

 0.56218949 1 1.86529857
    ```
```


GPW Functional

$$
\begin{aligned}
E^{\mathrm{el}[n]} & =\sum_{\mu \nu} P_{\mu \nu}\left\langle\varphi_{\mu}\right|-\frac{1}{2} \nabla^{2}+V_{\mathrm{loc}}^{\mathrm{SR}}+V_{\mathrm{nl}}\left|\varphi_{\nu}\right\rangle \\
& +2 \pi \Omega \sum_{\mathbf{G}} \frac{\tilde{n}_{\text {tot }}^{*}(\mathbf{G}) \tilde{n}_{\text {tot }}(\mathbf{G})}{\mathbf{G}^{2}}+\sum_{\mathbf{R}} \tilde{n}(\mathbf{R}) V^{\mathrm{XC}}(\mathbf{R}) \\
& =\sum_{\mu \nu} P_{\mu \nu}\left(\left\langle\varphi_{\mu}\right|-\frac{1}{2} \nabla^{2}+V^{\mathrm{ext}}\left|\varphi_{\nu}\right\rangle+\sum_{\mathbf{R}} V_{\mu \nu}^{\mathrm{HXC}}(\mathbf{R}) \varphi_{\mu \nu}^{\prime}(\mathbf{R})\right)
\end{aligned}
$$

Linear scaling KS matrix construction

CPZK DFT input

```
&FORCE_EVAL
    METHOD Quickstep
    &DFT
        BASIS_SET_FILE_NAME GTH_BASIS_SETS
        POTENTIAL_FILE_NAME GTH_POTENTIALS
        LSD F
        MULTIPLICITY 1
        CHARGE 0
        &MGRID
            CUTOFF 300
            REL_CUTOFF 50
    &END MGRID
    &QS
        EPS_DEFAULT 1.0E-10
        &END QS
        &SCF
            MAX_SCF 50
            EPS_SCF 2.00E-06
            SCF_GUESS ATOMIC
    &END SCF
        &XC
            &XC_FUNCTIONAL
            &PBE
            &END PBE
        &END XC_FUNCTIONAL
```

```
                    &XC_GRID
        XC_DERIV SPLINE2_smooth
        XC_SMOOTH_RHO NN10
            &END XC_GRID
        &END XC
        &END DFT
        &SUBSYS
    &CELL
            PERIODIC XYZ
            ABC 8. 8. 8.
        &END CELL
        &COORD
        0 0.000000 0.000000 -0.065587
        H 0.000000 -0.757136 0.520545
        H 0.000000 0.757136 0.520545
        &END COORD
        &KIND H
            BASIS_SET DZVP-GTH-PBE
            POTENTIAL GTH-PBE-q1
        &END KIND
        &KIND O
            BASIS_SET DZVP-GTH-PBE
            POTENTIAL GTH-PBE-q6
        &END KIND
    &END SUBSYS
&END FORCE_EVAL
```


Hard and Sof Densities

Formaldehyde

詸 Pseudopotential \Rightarrow frozen core
溇 Augmented PW \Rightarrow separate regions（matching at edges） LAPW，LMTO（OK Andersen，PRB 12， 3060 （1975）
隠 Dual representation \Rightarrow localized orbitals and PW PAW（PE Bloechl，PRB，50， 17953 （1994））

Partitioning of the Density

$$
n(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r})
$$

$$
\left.\begin{array}{l}
n=\tilde{n}+\sum_{A} n_{A}-\sum_{A} \tilde{n}_{A} \\
n(\mathbf{r})-\tilde{n}(\mathbf{r})=0 \\
\imath_{A}(\mathbf{r})-\tilde{n}_{A}(\mathbf{r})=0
\end{array}\right\} \mathbf{r} \in I
$$

$$
\left.\begin{array}{l}
n(\mathbf{r})-n_{A}(\mathbf{r})=0 \\
\tilde{n}(\mathbf{r})-\tilde{n}_{A}(\mathbf{r})=0
\end{array}\right\} \mathbf{r} \in A
$$

$$
n_{A}(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \chi_{\mu}^{A} \chi_{\nu}^{A} \quad \tilde{n}(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \tilde{\varphi}_{\mu} \tilde{\varphi}_{\nu} \rightarrow \sum_{\mathbf{G}} \hat{n}(\mathbf{G}) e^{i \mathbf{G} \cdot \mathbf{R}}
$$

Gaussian Augmented Plane Waves

Local Densíties

$$
n_{A}(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \chi_{\mu}^{A} \chi_{\nu}^{A}
$$

X_{μ} projection of φ_{μ} in Ω_{A}
through atom-dependent d'

$$
\chi_{\mu}=\sum_{\alpha} d_{\mu \alpha}^{\prime A} g_{\alpha}(\mathbf{r})
$$

projector basis (same size)

$$
\begin{gathered}
\left\{p_{\alpha}\right\} \quad \lambda_{\alpha}=k^{\alpha} \lambda_{\min } \quad\left\langle p_{\alpha} \mid \varphi_{\mu}\right\rangle=\sum_{\beta} d_{\mu \beta}^{\prime A}\left\langle p_{\alpha} \mid g_{\beta}\right\rangle \\
n_{A}(\mathbf{r})=\sum_{\alpha \beta}\left[\sum_{\mu \nu} P_{\mu \nu} d_{\mu \alpha}^{\prime A} d_{\nu \beta}^{\prime A}\right] g_{\alpha}(\mathbf{r}) g_{\beta}(\mathbf{r})=\sum_{\alpha \beta} P_{\alpha \beta}^{\prime A} g_{\alpha}(\mathbf{r}) g_{\beta}(\mathbf{r})
\end{gathered}
$$

Density Dependent Terms: XC

Semi-local functional like local density approximation, generalised gradient approximation or meta-functionals

Gradient: $\quad \nabla n(\mathbf{r})=\nabla \tilde{n}(\mathbf{r})+\sum_{A} \nabla n_{A}(\mathbf{r})-\sum_{A} \nabla \tilde{n}_{A}(\mathbf{r})$
$E[n]=\int V_{l o c}(\mathbf{r}) n(\mathbf{r})=\int\left\{\tilde{V}_{l o c}(\mathbf{r})+\sum_{A} V_{l o c}^{A}(\mathbf{r})+\sum_{A} \tilde{V}_{l o c}^{A}(\mathbf{r})\right\}$

$\times\left\{\tilde{n}(\mathbf{r})+\sum_{A} n_{A}(\mathbf{r})-\sum_{A} \tilde{n}_{A}(\mathbf{r})\right\} d \mathbf{r}$

$$
=\int\left\{\tilde{V}_{l o c}(\mathbf{r}) \tilde{n}(\mathbf{r})+\sum_{A} V_{l o c}^{A}(\mathbf{r}) n_{A}(\mathbf{r})-\sum_{A} \tilde{V}_{l o c}^{A}(\mathbf{r}) \tilde{n}_{A}(\mathbf{r})\right\}
$$

Density Dependent Terms: ES

Non local Coulomb operator

Same multipole expansion as the local densities

$$
\mathcal{Q}_{A}^{L}=\int\left\{n_{A}(\mathbf{r})-\tilde{n}_{A}(\mathbf{r})+n_{A}^{Z}(\mathbf{r})\right\} r^{l} \mathcal{Y}_{l m}(\theta \phi) r^{2} d r \sin (\theta) d \theta d \phi
$$

$$
V\left[\tilde{n}+\mathrm{n}^{0}\right]+\sum_{A} V\left[n_{A} \not \subset n_{A}^{Z}\right]-\sum_{A} V\left[\tilde{n}_{A} \not \mathbf{n}_{A}^{0}\right]
$$

Interstitial region Atomic region

GAPW Functionals

$$
E_{x c}[n]=E_{x c}[\tilde{n}]+\sum_{A} E_{x c}\left[n_{A}\right]-\sum_{A} E_{x c}\left[\tilde{n}_{A}\right]
$$

$$
E_{H}\left[n+n^{Z}\right]=E_{H}\left[\tilde{n}+\mathrm{n}^{0}\right]+
$$

on global grids

via collocation + FFT

Analytic integrals
Local Spherical Grids

Iannuzzi, Chassaing, Hutter, Chimia (2005);
VandeVondele, Iannuzzi, Hutter, CSCM2005 proceedings

Integrals on Atom centered Grids

Separation into radial and angular contributions

$$
\begin{aligned}
n_{A}(\mathbf{r}) & =\sum_{\alpha \beta} P_{\alpha \beta}^{A} r^{l_{\alpha}} e^{-\alpha_{\alpha} r^{2}} \mathcal{Y}_{l_{\alpha} m_{\alpha}}(\theta, \phi) r^{l_{\beta}} e^{-\alpha_{\beta} r^{2}} \mathcal{Y}_{l_{\beta} m_{\beta}}(\theta, \phi) \\
& =\sum_{\alpha \beta}\left[P_{\alpha \beta}^{A} r^{l_{\alpha}+l_{\beta}} e^{-\left(\alpha_{\alpha}+\alpha_{\beta}\right) r^{2}} \sum_{L M} C(\alpha, \beta, L, M) \mathcal{Y}_{L M}(\theta, \phi)\right] \\
& =\sum_{L M}\left[\sum_{\alpha \beta} n_{\alpha \beta}^{(r)}(r) C(\alpha, \beta, L, M)\right] \begin{array}{c}
\text { Clebsch-Gordon expansion } \\
\mathcal{Y}_{L M}(\theta, \phi)
\end{array}
\end{aligned}
$$

$\langle\alpha| V_{\mathrm{XC}}^{A}|\beta\rangle \quad\langle\alpha| V_{\mathrm{H}}^{A}|\beta\rangle \quad$ integrated numerically on spherical grids

Radial : Gauss-Chebyshev quadrature
Angular: Lebedev quadrature

GAPW Input

```
&DFT
&QS
    EXTRAPOLATION ASPC
    EXTRAPOLATION_ORDER 4
        EPS_DEFAULT 1.0E-12
        METHOD GAPW
        EPS_DEFAULT 1.0E-12
        QUADRATURE GC_LOG
        EPSFIT 1.E-4
        EPSIS0 1.0E-12
        EPSRH00 1.E-8
        LMAXN0 4
        LMAXN1 6
        ALPHA0_H 10
&END QS
```

\&SUBSYS
."
\&KIND 0
BASIS_SET DZVP-MOLOPT-GTH-q6
POTENTIAL GTH-BLYP-q6
LEBEDEV_GRID 80
RADIAL_GRID 200
\&END KIND
\&KIND 01
ELEMENT 0
\#
BASIS_SET 6-311++G2d2p
BASIS_SET 6-311G**
POTENTIAL ALL
LEBEDEV_GRID 80
RADIAL_GRID 200
\&END KIND
\&END SUBSYS

All-electron Calculations:CP2K vs G03

Energy Functional Minimisation

$$
C^{*}=\arg \min _{C}\left\{E(C): C^{T} S C=1\right\}
$$

业 Standard：Diagonalisation＋mixing（DIIS，Pulay，J．Comput．Chem．3， 556，（1982）；iterative diag．Kresse G．et al，PRB，54（16），11169，（1996））

Direct optimisation：Orbital rotations（maximally localised Wannier functions）

兼㐘 Linear scaling methods：Efficiency depends on sparsity of P（ s ． Goedecker，Rev．Mod．Phys．71，1085，（1999））

$$
\begin{gathered}
\mathbf{P}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \propto e^{-c \sqrt{E_{\text {gap }}}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
\mathbf{P}_{\mu \nu}=\sum_{p q} \mathbf{S}_{\mu p}^{-1} \mathbf{S}_{q \nu}^{-1} \iint \varphi_{p}(\mathbf{r}) \mathbf{P}(\mathbf{r}, \mathbf{r} \prime) \varphi_{q}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{d} \mathbf{d} \mathbf{r}^{\prime}
\end{gathered}
$$

OT Performance

Refined preconditioner, most effective during MD of large systems with well conditioned basis sets

Schiffmann, VandeVondele, JCP 142244117 (2015)

OT input

```
&SCF
    EPS_SCF 1.01E-07
    &OUTER_SCF
        MAX_SCF 20
        EPS_SCF 1.01E-07
    &END OUTER_SCF
    SCF_GUESS RESTART
    MAX_SCF 20
    &OT
        MINIMIZER DIIS
        PRECONDITIONER FULL_ALL
    &END OT
&END SCF
```


Metallic Electronio Structure

$$
E_{\mathrm{band}}=\sum_{n} \frac{1}{\Omega_{\mathrm{BZ}}} \int_{\mathrm{BZ}} \varepsilon_{n \mathbf{k}} \Theta\left(\varepsilon_{n \mathbf{k}}-E_{f}\right) d^{3} \mathbf{k} \rightarrow \sum_{n} \sum_{k} w_{\mathbf{k}} \varepsilon_{n \mathbf{k}} \Theta\left(\varepsilon_{n \mathbf{k}}-E_{f}\right) d^{3} \mathbf{k}
$$

charge sloshing and exceedingly slow convergence
漁 Wavefunction must be orthogonal to unoccupied bands close in energy
稳 Discontinuous occupancies generate instability（large variations in $n(r)$ ）
漁 Integration over k－points and iterative diagonalisation schemes

SMEAring

Step function replaced by smooth-varying function (incl. unocc)

$$
f_{n}\left(\frac{\varepsilon_{n}-E_{f}}{k T}\right)=\frac{1}{\text { Fermi-Dirac }}
$$

E no longer variational with respect to fn Mermin functional: minimise the free energy

$$
F(T)=E-\sum_{n} k_{B} T S\left(f_{n}\right) \quad S\left(f_{n}\right)=-\left[f_{n} \ln f_{n}+\left(1-f_{n}\right) \ln \left(1-f_{n}\right)\right]
$$

Any smooth operator that allows accurate $S\left(f_{n}\right)$ to recover the $T=0$ result

Mixing in 4 -space

Charge sloshing instabilities: small G, degenerate states, long-range $n(r)$ oscillations

$$
\begin{gathered}
n^{\text {new }}=\sum_{i} \alpha_{i} n_{i}^{\text {inp }} \quad \text { Residual } \quad \mathcal{R}\left[n^{\text {inp }}\right]=n^{\text {out }}\left[n^{\text {inp }}\right]-n^{\text {inp }} \\
{\left[\mathbf{J}^{-1}\right]^{m}\left|\Delta \mathcal{R}_{m}\right\rangle=-\left|\Delta n_{m}\right\rangle \quad \text { minimise the residual }}
\end{gathered}
$$

Kerker: damping oscillations at small G $\quad\left[\mathbf{J}^{-1}\right]^{1}=w(G)=\frac{|G|^{2}}{|G|^{2}+\beta}$

Trial density mixed with previous densities and residuals

$$
n_{m+1}^{\mathrm{inp}}=n_{m}^{\mathrm{inp}}+\mathbf{G}^{I} \mathcal{R}\left[n_{m}^{\mathrm{inp}}\right]+\sum_{i=1}^{m-1} \alpha_{i}\left(\Delta n_{i}+\mathbf{G}^{I} \Delta \mathcal{R}_{i}\right)
$$

Iterative improvement of the the $n(r)$

Input density matrix

$$
\mathbf{P}_{\alpha \beta}^{\mathrm{in}} \rightarrow n^{\mathrm{in}}(\mathbf{r})
$$

Rhodium: Bulk and surface

Bulk: $4 \times 4 \times 4$
Surface: 6×67 layers

| Basis | PP | $\mathrm{a}_{0}[\AA \AA]$ | $\mathrm{B}[\mathrm{GPa}]$ | $\mathrm{E}_{s}\left[\mathrm{eV} / \AA^{2}\right]$ | $\mathrm{W}_{f}[\mathrm{eV}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3s2p2df | 17 e | 3.80 | 258.3 | 0.186 | 5.11 |
| 2s2p2df | 9 e | 3.83 | 242.6 | 0.172 | 5.14 |
| 2sp2d | 9 e | 3.85 | 230.2 | 0.167 | 5.20 |
| spd | 9 e | 3.87 | 224.4 | 0.164 | 5.15 |

SCaLAPACK for diagonlisation

1003 atoms 3410 MOS 27069 BSf

Polyalanine peptide eigenvalues and -vectors of T
pdsyevd (ESSL) on IBM BGP

576 Cu, nao $=14400$, Nelect. $=6336$, k of eigen-pairs $=3768$

| nprocs | syevd | syevr | Cholesky |
| :---: | :---: | :---: | :---: |
| 32 | $106(49 \%)$ | $72(40 \%)$ | $38(21 \%)$ |
| 64 | $69(46 \%)$ | $48(37 \%)$ | $34(26 \%)$ |
| 128 | $41(41 \%)$ | $29(34 \%)$ | $23(28 \%)$ |
| 256 | $35(41 \%)$ | $26(34 \%)$ | $24(32 \%)$ |
| Syevd: D\&C | | | |
| Syevr: MRRR | | | |

>70\% in eigenvalue solver
poor scaling
time \times SCF, on CRAY XE6

ELPA (http://elpa.rzg.mpg.de)

Improved efficiency by a two-step transformation and back transformation

Large metallic systems

hBN/Rh(111) Nanomesh

 $13 \times 13 \mathrm{hBN}$ on 12×12 Rh slab

2116 Ru atoms (8 valence el.) + 1250 C atoms, Nel=21928, $\mathrm{Nao}=47990$;
~ several days per structure optimisation

Slab 12×12 Rh(111) slab, $a_{0}=3.801 \AA$, 1 layer hBN 13×13
4L: 576Rh + 169BN: Nao=19370; Nel=11144
7L: 1008Rh + 338BN: Nao=34996; Nel=19840

Structure opt. > 300 iterations => $1 \div 2$ weeks on 512 cores

Iannuzzi et al., PRB (2013)
Cun, Iannuzzi et al, Nano Letter (2013)

SCF for Metals

```
&SCF
    SCF_GUESS ATOMIC
    MAX_SCF 50
    EPS_SCF 1.0e-7
    EPS_DIIS 1.0e-7
    &SMEAR
        METHOD FERMI_DIRAC
        ELECTRONIC_TEMPERATURE 500.
    &END SMEAR
    &MIXING
            METHOD BROYDEN_MIXING
            ALPHA 0.6
            BETA 1.0
            NBROYDEN 15
    &END MIXING
    ADDED_MOS 20 20
&END SCF
```

```
&XC
    &XC_FUNCTIONAL PBE
        &END
    &vdW_POTENTIAL
        DISPERSION_FUNCTIONAL PAIR_POTENTIAL
        &PAIR_POTENTIAL
            TYPE DFTD3
            PARAMETER_FILE_NAME dftd3.dat
            REFERENCE_FUNCTIONAL PBE
        &END PAIR_POTENTIAL
        &END vdW_POTENTIAL
&END XC
```


valleys and Hills of Graphene

| Method | $h_{\min }(\AA)$ | $\Delta h(\AA)$ |
| :--- | :---: | :---: |
| LEEM 5 | 1.5 ± 0.1 | - |
| LEED 18 | 2.1 ± 0.2 | 1.5 ± 0.2 |
| SXRD 21 | - | 0.82 ± 0.15 |
| HAS 19 | - | 0.17 ± 0.03 |

Issues: binding distance corrugation height distribution

x-ray Photoemission Spectra

Gaussian-fitted line shape Two distinguished C1s components valley/hill boundary not clearly distinguished

continuous distribution valley-to-hill

Free standing graphene @ 283.8 eV

x-ray standing waves

Exploit spatial modulation of XSW field (interference) by scanning through the Bragg condition: spatial resolution and chemical sensitivity

$$
Y(\Omega)=1+R+2 C \sqrt{R} f_{H} \cos \left(\nu-2 \pi P_{H}\right)
$$

| | | | | | | valleys | | | hills | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| | $P_{\mathrm{C} 2}^{H}$ | $f_{\mathrm{C} 2}^{H}$ | $h_{\text {valley }}(\AA)$ | $h_{\min }(\AA)$ | $P_{\mathrm{C} 1}^{H}$ | $f_{\mathrm{C} 1}^{H}$ | $\Delta h(\AA)$ | | | | |
| XSW | 0.99 ± 0.01 | 0.86 ± 0.02 | 2.12 ± 0.03 | | 1.43 ± 0.02 | 0.72 ± 0.02 | | | | | |
| DFT | 1.01 | 0.94 | 2.17 | 2.06 | 1.43 | 0.73 | 1.47 | | | | |

Theoretical Spectroscopy

Core Binding Energies vs xps

桷Consider possible excited states＠higher level of theory

洋 \triangle SCF takes into account the relaxation

䲞 Transition operator method， according to Slater＇s transition state idea

$$
E(\lambda)=\sum_{k} \lambda^{k} E_{k}=E(0)+\lambda E_{1}+\frac{1}{2} \lambda^{2} E_{2}+\ldots
$$

Slater Transition State

Emptying the state (occupation): energy change as finite difference

$$
\begin{gathered}
\Delta E=E(1)-E(0)=E_{1}+E_{2}+E_{3}+\ldots \\
F(\lambda)=\frac{\partial E}{\partial \lambda}=E_{1}+2 \lambda E_{2}+3 \lambda^{2} E_{3}+\ldots \\
-\varepsilon_{k}=F\left(\frac{1}{2}\right)=E_{1}+E_{2}+\frac{3}{4} E_{3}+\ldots \quad \text { Error in } E 3
\end{gathered}
$$

Janak's theorem: KS energy computed with the modified Hamiltonian

$$
\mathcal{H}\left(f_{k}=1 / 2\right)
$$

x-ray Absorption Fine Structure

\& Characterization of materials by synchrotron radiation
\& X-ray spectra connect to the core-electron excited states (role of core hole)
\& Element specific probe:

- electronic structure in situ
- time resolution (fs)
no long range order required
- imaging

Interpretation of experiment, structures refinement (signal assignment), understanding of physical-chemical properties of materials
\& Challenging interpretation of the spectra ${ }^{10}$
\& Central role of theoretical approach

- charge transfer
- nature of bonding
- hybridization
- chemical environment

c K-edge for different amino acids

core Hole Creation and Decay

XES/NEXAFS local probes for electronic and geometric properties

Unoccupied levels, symmetry resolved

One step process
Finale state: core-hole

Instantaneous configuration in dynamic systems

Occupied orbitals

Two step process
Final state : valence-hole

Binding of adsorbed molecules

NEXAFS

continuum states IP
bounded states
core states
continuum states

bounded states
core states

Interaction $x=r a y$ with matter

\& Interaction with an electromagnetic field (incoming radiation)

$$
\mathbf{A}(\mathbf{r}, t)=A_{0} \mathbf{e} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t)
$$

$\left.\Sigma^{*}\right\}$ Linear perturbation term (time dependent perturbations) $\quad V(t)=\frac{e}{m c} \mathbf{A} \cdot \mathbf{p}$
\&'3 Induced transition: probability according to Fermi golden rule

$$
\left.P_{i f}=\frac{\pi e^{2}}{2 \hbar m^{2} c^{2}} A_{0}^{2}\left|\langle f| e^{i \mathbf{k} \cdot \mathbf{r}} \mathbf{e} \cdot \mathbf{p}\right| i\right\rangle\left.\right|^{2} \rho_{i}(E)
$$

${ }^{<}<$Long wavelength (UV, soft x-rays) $\quad k r_{s}=\frac{2 \pi}{\lambda} r_{s} \ll 1$

$$
\left.P_{i f} \propto|\langle f| \hat{e} \cdot \hat{p}| i\right\rangle\left.\right|^{2} \quad \text { velocity form }
$$

* Equivalent operators

$$
\left.\hat{p}=-i \hbar \nabla=\frac{i m}{\hbar}[\hat{H}, \hat{r}] \quad P_{i f} \propto\left(E_{f}-E_{i}\right)|\langle f| \hat{\mu}| i\right\rangle\left.\right|^{2} \quad \text { length form }
$$

$\triangle S C F$

* Ground state KS virtual orbitals

$$
I P_{i} \neq-\varepsilon_{i} \quad \Delta E\left(1 s \rightarrow \pi^{*}\right) \neq \varepsilon_{\pi^{*}}-\varepsilon_{1 s}
$$

$$
\begin{aligned}
I P_{i=1} & =\tilde{E}\left(0_{1}, 1_{2} . ., 1_{N}, \ldots 0_{r} \ldots\right)-\tilde{E}\left(1_{1}, 1_{2} . ., 1_{N}, \ldots, 0_{r}, \ldots\right) \\
\Delta E(i \rightarrow r) & =\tilde{E}\left(1_{1}, 1_{2} \ldots, 0_{i}, \ldots, 1_{N}, \ldots, 1_{r}, \ldots\right)-\tilde{E}\left(1_{1}, 1_{2} \ldots, 1_{i}, \ldots 1_{N} \ldots, 0_{r}, \ldots\right)
\end{aligned}
$$

* Numerically not stable : difference between 2 SCF calculations
\$ Higher excited states states (collapse)
俎 Not orthogonal MOs sets $\left.\quad P_{i f} \propto|\langle f| \mathbf{e} \cdot \mathbf{p}| i\right\rangle\left.\right|^{2} \rho_{i}(E)$

The Transition Potential Method

Independent-Particle Approach

* Direct calculation of the excitation energies from the solution of KS equation with a modified core potential on the absorbing atom

$$
I P_{i}=\int_{1}^{0} d f_{i} \frac{\partial \tilde{E}\left(\left\{f_{j}\right\}\right)}{\partial f_{i}} \simeq\left(\frac{\partial \tilde{E}\left(\left\{f_{j}\right\}\right)}{\partial f_{i}}\right)_{f_{i}=\frac{1}{2}}=\varepsilon_{i}\left(\frac{1}{2}\right)
$$

* Relaxation effects up to second order in $\partial E / \partial f$: balance between initial and final state contributions
* One calculation for each excitation

$$
\left.\hbar \omega_{i f}=\varepsilon_{f}^{T}-\varepsilon_{i}^{T} \quad I_{i f}=\frac{2}{3} \omega_{i f}\left|\left\langle\psi_{i}^{T}\right| \bar{\mu}\right| \psi_{f}^{T}\right\rangle\left.\right|^{2}
$$

Errors/corrections

\&'s Single particle picture (hole/electron correlation)
\&'s Basis sets flexible to relaxation to describe Rydberg states; Double basis set approach [19s,19p,19d]
\&) Using TP: error due to higher order contributions to the core relaxation energy
\$) Energy corrections based on \triangle SCF

$$
\begin{gathered}
\Delta I P=\varepsilon_{1 s}^{T}\left(\frac{1}{2}\right)-I P_{\Delta S C F} \\
\Delta\left(1 s \rightarrow \pi^{*}\right)=\left(\varepsilon_{\pi *}-\varepsilon_{1 s}^{T}\left(\frac{1}{2}\right)\right)-\Delta E_{\Delta S C F}
\end{gathered}
$$

\&\}Relativistic correction as rigid, species-dependent translation

The Core Hole

The actual location of the excited electron in the final state has a relative small effect on relaxation of the orbitals

The focus is set on the core hole

| FCH |
| :---: |
| full core hole |
| system charged +1 |
| dominated |
| by the |
| final state |

XFCH
full core hole full 1st excited state neutral system
contribution by the final state

Only one SCF calculation per core hole for the entire spectrum

AE-TP in condensed Matter

* Ground state SCF and localization of the occupied orbitals
* Character of the Core states
$\tilde{\psi}_{i}(\mathbf{r})=\sum_{\mu} \tilde{C}_{\mu i} \varphi_{\mu}(\mathbf{r}) \stackrel{O_{1 s}, n}{\Rightarrow} \quad \operatorname{Max}_{i}\left\{\left\langle\tilde{\psi}_{i}^{O_{n}} \mid \varphi_{O, 1 s}^{S T O}\right\rangle\right\} \Rightarrow \quad$ j-th state
\& Half Core Hole / Full Core Hole / any core occupation (LSD)

$$
f_{j}=\frac{1}{2}, 0
$$

* SCF with modified occupation numbers
* Oscillator strengths in the velocity form

$$
\left.I_{i f}=\left|\left\langle\psi_{i}^{T}\right| \nabla\right| \psi_{f}^{T}\right\rangle\left.\right|^{2}
$$

input XAS

\&XAS

```
&SCF
    EPS_SCF 1.0E-4
    MAX_SCF 200
    &SMEAR ON
        METHOD FERMI_DIRAC
        ELECTRONIC_TEMPERATURE [K] 300
    &END
    &MIXING
        METHOD BROYDEN_MIXING
        ALPHA 0.1
        BETA 1.5
        NBUFFER 8
    &END MIXING
&END SCF
METHOD TP_HH
DIPOLE_FORM VELOCITY
STATE_TYPE 1s
STATE_SEARCH 10 # mult. matches
ATOMS_LIST 1
ADDED_MOS 1000
&LOCALIZE
&END
```

```
&PRINT
```

\&PRINT
\&PROGRAM_RUN_INFO
\&PROGRAM_RUN_INFO
\&END
\&END
\&RESTART
\&RESTART
FILENAME ./root
FILENAME ./root
\&EACH
\&EACH
XAS_SCF 15
XAS_SCF 15
\&END
\&END
ADD_LAST NUMERIC
ADD_LAST NUMERIC
\&END
\&END
\&XAS_SPECTRUM
\&XAS_SPECTRUM
FILENAME ./root
FILENAME ./root
\&END
\&END
\&XES_SPECTRUM
\&XES_SPECTRUM
FILENAME ./root
FILENAME ./root
\&END
\&END
\&END
\&END

Broadening and shif

Convolution using Gaussian functions with adapted width

$$
\begin{aligned}
& f(x)=I_{\mathrm{SL}} \frac{1}{\sigma \sqrt{2 \pi}} e^{\left(x-x_{\mathrm{SL}}\right)^{2} /\left(2 \sigma^{2}\right)} \\
& \sigma=\left\{\begin{array}{clll}
\sigma_{\min } & : & \omega_{i f}<E_{\min } \\
\sigma_{\min }+\left(\omega_{i f}-E_{\min }\right) \cdot \frac{\sigma_{\max }-\sigma_{\min }}{E_{\max }-E_{\min }} & : & E_{\min }<\omega_{i f}<E_{\max } \\
\sigma_{\max } & : & E_{\max }<\omega_{i f}
\end{array}\right. \\
& \sigma_{\min }=0.5 \mathrm{eV} \\
& \sigma_{\max }=8 \mathrm{eV} \\
& E_{\max }-E_{\min } \approx 20 \mathrm{eV}
\end{aligned}
$$

NEXAFS for Hexagonal ice

Exp: gas phase vs Ice

All O donating and accepting 2 h -bonds
Charge redistribution (no antibonding OH)
Large post-edge band (emptied lone-pairs)

size of the simulation cell

Different core State Ocoupation

Not only the absolute position but also the shape of the spectrum might change

Liquid Water

Sampling over pre-generated trajectories: 20 ps , spectrum every 0.5 ps

Nuclear Magnetic Resonance

Measure of the Larmor precession frequency of the nuclear spin within a magnetic field

Interaction between \mathbf{B} and a spin $1 / 2$ nucleus with spin angular momentum $\quad E=-\boldsymbol{\mu} \cdot \mathbf{B}$

$$
\hbar \omega=\Delta E=-\gamma \hbar B
$$

in diamagnetic materials the $B_{i n d}$ arises only from the induced orbital currents j

$$
\mathbf{B}=\mathbf{B}_{0}+\mathbf{B}_{\text {ind }} \quad \mathbf{B}_{\text {ind }}=-\overleftrightarrow{\sigma}_{k} \mathbf{B}_{0}
$$

chemical shielding

radio frequencies

signals from ensemble of sites
highly sensitive to atomic structure and dynamics

$$
\mathbf{B}_{\text {ind }}(\mathbf{r})=\frac{1}{c} \int \mathrm{~d}^{3} r^{\prime} \mathbf{j}\left(\mathbf{r}^{\prime}\right) \times \frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}
$$

applied B^{0} along x

$$
\sigma_{x y}\left(\mathbf{R}_{A}\right)=\frac{1}{c} \int_{S 2}\left[\frac{\mathbf{r}-\mathbf{R}_{A}}{\left|\mathbf{r}-\mathbf{R}_{A}\right|^{3}} \times \mathbf{j}_{x i}(\mathbf{r})\right]_{\nu} \mathrm{d}^{3} r
$$

chemical shift w.r.t. reference

$$
\left.\left.\delta=\frac{\nu-\nu_{\mathrm{ref}}}{\nu_{\mathrm{ref}}}\left(\times 10^{6}\right) \approx\left(\sigma_{\mathrm{ref}}-\sigma\right) \quad \sigma=\frac{1}{3} \operatorname{Tr} \right\rvert\, \overleftrightarrow{\sigma}\right]
$$

Magnetic Field

Representation by means of a vector potential and a Gauge function

$$
\begin{aligned}
& \mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}(\mathbf{r})=\boldsymbol{\nabla} \times\left[\mathbf{A}(\mathbf{r})+\nabla \Phi_{g}(\mathbf{r})\right] \\
& \mathbf{A}(\mathbf{r})=-\frac{1}{2} \mathbf{r} \times \mathbf{B} \quad \Phi_{g}(\mathbf{r})=\frac{1}{2} \mathbf{r} \cdot \mathbf{R}_{b} \times \mathbf{B}
\end{aligned}
$$

The Gauge function translates the origin, it does not change the physics, but affects the numerical accuracy

Minimal substitution in the Hamiltonian $\quad \hat{\mathbf{p}} \rightarrow \hat{\mathbf{p}}-e \mathbf{A}(\hat{\mathbf{r}})$

$$
\begin{aligned}
& \mathbf{H}=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A}(\mathbf{r}))^{2}+\mathcal{V} \\
& \mathbf{H}^{\text {pert }}=-\frac{e}{m} \hat{\mathbf{p}} \cdot \mathbf{A}(\hat{\mathbf{r}})+\frac{e^{2}}{2 m} \mathbf{A}(\hat{\mathbf{r}}) \cdot \mathbf{A}(\hat{\mathbf{r}}) \\
& \hat{\mathbf{p}}=-i \hbar \nabla \\
& \text { 1st order } \\
& \text { imaginary }
\end{aligned}
$$

Density Functional Perturbation Theory

Variational principle at second order in the DFT framework

$$
\begin{array}{rr}
\mathcal{E}_{\mathrm{tot}}=\mathcal{E}_{\mathrm{KS}}^{(0)}+\lambda \mathcal{E}^{\text {pert }} & \text { static perturbation } \\
E_{\mathrm{tot}}=E^{(0)}+\lambda E^{(1)}+\lambda^{2} E^{(2)}+\ldots & \psi_{i}=\psi_{i}^{(0)}+\lambda \psi_{i}^{(1)}+\lambda^{2} \psi_{i}^{(2)}+\ldots
\end{array}
$$

Expansion to 2nd order and minimisation: linear response $E^{(2)}$ variational in $\psi^{(1)}$

$$
\begin{aligned}
E^{(2)} & =\sum_{i j}\left\langle\psi_{i}^{(1)}\right| H^{(0)} \delta_{i j}-\left\langle\psi_{j}^{(1)}\right| H^{(0)}\left|\psi_{i}^{(0)}\right\rangle\left|\psi_{j}^{(1)}\right\rangle+\frac{1}{2} \int \frac{\partial^{2} \mathcal{E}_{\mathrm{Hxc}}}{\partial n\left(\mathbf{r}^{\prime}\right) \partial n(\mathbf{r})} n^{(1)}(\mathbf{r}) n^{(1)}\left(\mathbf{r}^{\prime}\right) d \mathbf{r} d \mathbf{r}^{\prime} \\
& +\sum_{i}\left[\left\langle\psi_{i}^{(1)}\right| \frac{\partial \mathcal{E}^{\text {pert }}}{\partial\left\langle\psi_{i}^{(0)}\right|}+\frac{\partial \mathcal{E}^{\text {pert }}}{\partial\left|\psi_{i}^{(0)}\right\rangle}\left|\psi_{i}^{(1)}\right\rangle\right]
\end{aligned}
$$

$$
H^{1}=\hat{\mathbf{p}} \cdot\left(\hat{\mathbf{r}}-\mathbf{R}_{g}\right) \times \mathbf{B}=\left[(\hat{\mathbf{r}} \times \hat{\mathbf{p}})-\left(\mathbf{R}_{g} \times \hat{\mathbf{p}}\right)\right] \cdot \mathbf{B}
$$

Hamiltonian

$$
-i \sum_{i \nu}\left(H_{\mu \nu}^{0} \delta_{i j}-S_{\mu \nu}\left\langle\psi_{i}^{0}\right| H\left|\psi_{j}^{0}\right\rangle\right) C_{\nu i}^{1}=\sum_{\nu} H_{\mu \nu(j)}^{1} C_{\nu j}^{0}
$$

Induced Current Density

Perturbation operator split into three terms

$$
\begin{array}{ccc}
C^{\mathrm{L}_{2}} C^{\mathrm{L}_{y}} C^{\mathrm{L}_{z}} & C^{\mathrm{P}_{x}} C^{\mathrm{P}_{y}} C^{\mathrm{p}} & C^{\Delta_{i x}} \quad C^{\Delta_{i y}} U^{\Delta_{i z}} \\
H_{\mu \nu(j)}^{\mathrm{T}}=-i\left(\mu\left|\left(\hat{\mathbf{r}}-\mathbf{d}_{j}\right) \times \nabla\right| i \gamma\right\rangle & H_{\mu \nu}^{\mathrm{p}}=-i\langle\mu \nabla \mid \nu\rangle & H_{\mu \nu j}^{\Delta_{i}}=-i\left(\mathbf{d}_{i}-\mathbf{d}_{j}\right) \times\langle\mu| \nabla|\nu\rangle
\end{array}
$$

x-component of current density j induced by B^{0} applied along y

$$
\begin{aligned}
j_{x y}(\mathbf{r}) & =-\frac{1}{2 c} \sum_{i} \sum_{\mu \nu}\left[C_{\mu i}^{0}\left(C_{\nu i}^{\mathrm{L}_{y}}+\left(\mathbf{R}_{g}-\mathbf{d}_{i}\right)_{x} C_{w i}^{\mathrm{p}_{z}}-\left(\mathbf{R}_{g}-\mathbf{d}_{i}\right)_{z} C_{\nu i}^{\mathrm{p}_{x}}-C_{\nu i}^{\Delta_{i y}}\right)\right. \\
& \left.\times\left(\left[\nabla_{x} \varphi_{\mu}(\mathbf{r})\right] \varphi_{\nu}(\mathbf{r})-\varphi_{\mu}(\mathbf{r})\left[\nabla_{\mathbf{x}}\left(\varphi_{\nu}(\mathbf{r})\right)\right]\right)\right] \\
& +\left(\mathbf{r}-\mathbf{R}_{g}\right)_{z} n(\mathbf{r}) \quad \text { diamagnetic }
\end{aligned}
$$

Gauge invariance in molecular and periodic systems

| CSGT | $\mathbf{R}_{g}=\mathbf{r}$ | computationally convenient, slow
 converging with basis set quality |
| :--- | :---: | :---: |
| IGAIM | $\mathbf{R}_{g}=\mathbf{R}_{I}$ | individual gauge for atoms in molecules |

GAPW Chemical shif

applied Bo along $x \quad \sigma_{x y}\left(\mathbf{R}_{A}\right)=\frac{1}{c} \int_{\Omega}\left[\frac{\mathbf{r}-\mathbf{R}_{A}}{\left|\mathbf{r}-\mathbf{R}_{A}\right|^{3}} \times \mathbf{j}_{x}(\mathbf{r})\right]_{y} \mathrm{~d}^{3} r$

$$
\mathbf{j}(\mathbf{r})=\tilde{\mathbf{j}}(\mathrm{r})+\sum_{A}\left(\mathbf{j}_{A}(\mathbf{r})-\tilde{\mathbf{j}}_{A}(\mathbf{r})\right)
$$

GAPW induced current density

from soft term in reciprocal space

$$
\begin{gathered}
\tilde{\mathbf{B}}^{\text {ind }}(\mathbf{G} \neq 0)=-\mu_{0} i \frac{\mathbf{G}}{|\mathbf{G}|^{2}} \times \tilde{\mathbf{j}}(\mathbf{G}) \\
\tilde{\mathbf{B}}^{\text {ind }}(\mathbf{G}=0)=\kappa \chi \mathbf{B}^{\mathrm{ext}} \quad \\
\chi_{x y}=\frac{2 \pi}{\Omega} \int\left[\mathbf{r} \times \tilde{\mathbf{j}}_{x}(\mathbf{r})\right]_{y} \mathrm{~d}^{3} r
\end{gathered}
$$

from local terms by integration on spherical grids

$$
\sigma_{x y}^{\mathrm{loc}}\left(\mathbf{R}_{A}\right)=\frac{1}{c} \sum_{B} \int_{\Omega_{B}}\left[\frac{\mathbf{r}-\mathbf{R}_{A}}{\left|\mathbf{r}-\mathbf{R}_{A}\right|^{3}} \times\left(\mathbf{j}_{x B}(\mathbf{r})-\tilde{\mathbf{j}}_{x B}(\mathbf{r})\right)\right]_{y} \mathrm{~d}^{3} r
$$

NMR Input

```
Linear Response run-type
&GLOBAL
    PROJECT
    PRINT_LEVEL
    RUN TYPE
&END G
${PROJECT_NAME}
LOW
LINEAR_RESPONSE
```


Ground State GAPW

```
&DFT
    BASIS_SET_FILE_NAME EMSL_BASIS_SETS
    POTENTIAL_FILE_NAME POTENTIAL
    &MGRID
            CUTOFF 300
    &END MGRID
    &QS
        METHOD GAPW
    &END QS
    &SCF
        &OUTER_SCF
            MAX_SCF 200
        &END OUTER_SCF
        MAX_SCF 20
        EPS_SCF 10E-6
        &OT
            ALGORITHM IRAC
            PRECONDITIONER FULL_ALL
        &END OT
    &END SCF
    &XC
        &XC_FUNCTIONAL BLYP
        &END XC_FUNCTIONAL
    &END XC
&END DFT
```


NMR Chemical Shift

```
&PROPERTIES
    &LINRES
        &LOCALIZE
        &END
        OPT_METHOD CG
        LINESEARCH 2PNT
        PRECONDITIONER FULL_ALL
        MAX_SCF 2000
        &CURRENT
            GAUGE ATOM
            ORBITAL_CENTER COMMON
        &END CURRENT
        &NMR
            INTERPOLATE_SHIFT T
            &PRINT
                &CHI_TENSOR
                &END CHI_TENSOR
            &END PRINT
        &END
    &END
&END
```


NMR Output for SiH_{4}

Converged GAPW SCF

NMR Output for SiH_{4}

Localization procedure through Jacobi rotations

LOCALIZE| The spread relative to a set of orbitals is computed
LOCALIZE Orbitals to be localized: All the occupied
LOCALIZE Spread defined by the Berry phase operator
LOCALIZE| The optimal unitary transformation is generated by the Jacobi algorithm
Localization of the ground state orbitals before starting the linear response calculation
Localization by iterative Jacobi rotation
Iteration Tolerance
$100 \quad 0.2560 \mathrm{E}-01$
$200 \quad 0.1556 \mathrm{E}-01$
$300 \quad 0.6506 \mathrm{E}-02$
$400 \quad 0.1981 \mathrm{E}-02$
$500 \quad 0.8639 \mathrm{E}-03$
$600 \quad 0.3288 \mathrm{E}-03$
Localization for spin 1 converged in 698 iterations
$\begin{array}{lllll}\text { Total Spread (Berry) } x, y, z: & 1.1135942650 & 1.1135229959 & 1.1133052793\end{array}$
WANNIER CENTERS for spin 1

| state | | | Centers | | ---------- Spreads | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | -0.222895 | 0.146450 | 0.058049 | 0.541470 | 0.000000 | 0.000000 |
| state | 2 | 0.000107 | -0.064397 | -0.264849 | 0.541498 | 0.000000 | 0.000000 |
| state | 3 | 0.222716 | 0.146673 | 0.058175 | 0.541470 | 0.000000 | 0.000000 |
| state | 4 | 0.000000 | 0.000121 | 0.000245 | 0.140158 | 0.000000 | 0.000000 |
| state | 5 | 0.000072 | -0.228327 | 0.149401 | 0.541477 | 0.000000 | 0.000000 |
| state | 6 | -1.772371 | -1.183928 | -0.406835 | 1.888384 | 0.000000 | 0.000000 |
| state | 7 | 0.000093 | 0.608045 | 2.082470 | 1.887723 | 0.000000 | 0.000000 |
| state | 8 | 0.000211 | 1.760315 | -1.267771 | 1.887975 | 0.000000 | 0.000000 |
| state | 9 | 1.772063 | -1.184376 | -0.406863 | 1.888382 | 0.000000 | 0.000000 |

NMR Output for SiH_{4}

Linear Response Initialization

START LINRES CALCULATION

NMR Output for SiH_{4}

Response calculation for first perturbation operator

*** Self consistent optimization of the response wavefunctions ***
Response to the perturbation operator P_x

Isolated Adenine

Geometry optimised in gas phase : BLYP/6-31G(dp)

| | | $\begin{gathered} \text { CP2K } \\ \text { IGAIM } \\ \text { BLYP/cc-p-VQZ } \end{gathered}$ | BLYP /cc-pVQZ | 03
 AIM
 BLYP /aug-cc-pVZ5 | CP CS BLYP/ | MD SGT /200Ry | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | C_{2} | 164 | 164 | 166 | 136 | (168) | PP |
| | C_{4} | 159 | 159 | 162 | 130 | (161) | corpected |
| | C_{5} | 128 | 128 | 130 | 93 | (124) | |
| | C_{6} | 163 | 163 | 165 | 134 | (166) | |
| | C_{8} | 141 | 141 | 143 | 115 | (146) | |
| | H_{2} | 8.4 | 8.4 | 8.5 | 7.4 | | |
| | H_{8} | 7.5 | 7.5 | 7.7 | 7.0 | | |
| | N_{1} | -134 | -134 | -135 | -143 | (-118) | |
| | N_{3} | -142 | -142 | -146 | -152 | (-127) | |
| | N_{6} | -319 | -319 | -327 | -285 | (-332) | |
| | N_{7} | -129 | -129 | -132 | -154 | (-129) | |
| | N_{9} | -235 | -235 | -240 | -217 | (-240) | |
| | C_{t} | 177 | 177 | 175 | 7 | external reference | |
| TMS | H_{t} | 31.3 | 31.3 | 31.3 | 30.6 | | |
| MeNO_{2} | N_{n} | -159 | -159 | -166 | -299 | | |
| benz. | C_{b} | | | 37 | -99 | | |
| pyrid. | $\mathrm{N}_{p y}$ | | | -119 | -227 | | |
| pyrrol | $\mathrm{N}_{p r}$ | | | 77 | -79 | | |
| alinine | N_{a} | | | 171 | -8 | | |

Hydrated Adenine

QM/MM with 827 H2O: snapshot from classical MD

| | CP2K
 IGAIM
 BLYP/cc-p-VQZ | | | |
| :--- | :---: | :---: | :---: | :---: |
| | ISO | W0 | W3 | W5 |
| C_{2} | 164 | 164 | 166 | 166 |
| C_{4} | 148 | 148 | 148 | 148 |
| C_{5} | 120 | 120 | 120 | 120 |
| C_{6} | 160 | 160 | 159 | 159 |
| C_{8} | 145 | 152 | 154 | 154 |
| H_{2} | 7.8 | 7.8 | 7.8 | 7.9 |
| H_{8} | 7.7 | 8.3 | 8.2 | 8.4 |
| $\mathrm{~N}_{1}$ | -115 | -129 | -128 | -125 |
| $\mathrm{~N}_{3}$ | -127 | -147 | -144 | -145 |
| $\mathrm{~N}_{6}$ | -330 | -330 | -318 | -317 |
| $\mathrm{~N}_{7}$ | -121 | -144 | -147 | -149 |
| $\mathrm{~N}_{9}$ | -249 | -237 | -226 | -223 |

Electron Paramagnetic Resonance

$$
\begin{gathered}
\rho^{s}(\mathbf{r})=\rho^{\alpha}(\mathbf{r})-\rho^{\beta}(\mathbf{r}) \quad \text { spin density } \\
g_{x y}=g_{x y}^{\mathrm{Z}}+\Delta g_{x y}^{\mathrm{ZKE}}+\Delta g_{x y}^{\mathrm{SO}}+\Delta g_{x y}^{\mathrm{SOO}} \\
g_{x y}^{\mathrm{Z}}=g_{e} \delta_{x y} \quad g_{e}: \text { free el. } \mathrm{g} \text { value }
\end{gathered}
$$

$$
\Delta g_{x y}^{\mathrm{ZKE}}=-\frac{g_{e}}{c^{2}}\left(T^{\alpha}-T^{\beta}\right) \delta_{x y} \quad \mathrm{~T}: \text { unperturbed kinetic energy }
$$

induced spin current density

$$
\Delta g_{x y}^{\mathrm{SO}}=\frac{g_{e}-1}{c} \int_{\Omega_{C}}\left[\mathbf{j}_{x}^{\alpha} \times \nabla V_{\mathrm{eff}}^{\alpha}-\mathbf{j}_{x}^{\beta} \times \nabla V_{\mathrm{eff}}^{\beta}\right] d^{3} \mathbf{r} \mathrm{~V}_{\text {eff }} \text { : effective pot. }
$$

$$
\Delta g_{x y}^{\mathrm{SOO}}=2 \int_{\Omega_{C}} B_{x y}^{\mathrm{corr}}(\mathbf{r}) \rho^{s}(\mathbf{r}) d^{3} \mathbf{r}
$$

Bcorr : magnetic field from induced current density

o vacancy in α-quarz: g-tensor

QM/MM: 15000 atoms

159 QM atoms

Expt.
GAPW AE/PSP/MM

- GAPWAE/PSP/MM
——
GAPW AE/MM

| | $\Delta g_{i i}$ | θ | φ | $\Delta g_{i i}$ | | φ | $\Delta g_{i i}$ | θ | φ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta g_{x x}$ | -530 | 114.5° | 227.7° | -561 | 108.3° | 229.6° | -593 | 108.3° | 230.1° |
| $\Delta g_{y y}$ | -1790 | 134.5° | 344.4° | -1830 | 157.6° | 372.8° | -1870 | 149.0° | 353.6° |
| $\Delta g_{z z}$ | -2020 | 125.4° | 118.7° | -1898 | 102.5° | 135.4° | -1901 | 114.1° | 131.5° |

