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Kohn—-Sham (KS) Density Functional Theory (DFT)

e Hohenberg—Kohn Theorem |
The total energy can be calculated from a universal
functional of the density.
Existence theorem

e Hohenberg—Kohn Theorem Il
The correct density minimizes the energy functional.
Variational principle.

e Kohn—-Sham Theorem
For each density exists a system of non-interacting
particles in a local external potential with the same density.
Orbital picture.



Kohn—Sham DFT (I)

Minimization with constraints
Min E({®;})
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Kohn—Sham DFT (Ill)

Kinetic energy
Eiin = —5 2. (@] V?[®))
External energy (electron-nuclei interaction)
ext f Vext (I') df
Hartree (classmal Coulomb) energy
= [ ] 258 o ar
Exchange -correlation (non-classical Coulomb) (XC) energy
Ex = f F[p] ar
Orbital orthogonality constraint
(®i]®;) = 0j
Electron number constraint

2. fi(®i|®i) = N



Linear Combination of Atomic Orbitals (LCAQ)

Basis set
Overlap
Orthogonality
Density matrix
Density

Energy
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Gaussian Type Orbitals (GTO): General

e Primitive function
o(r) = r'Yim(F) exp[—a(r — A)?]
e Contracted GTO

X(r) =" dkex(r)
k

Contraction coefficients dx and exponents are fixed.
Contraction over functions with same angular momentum.



Gaussian Type Orbitals: Advantages

GTO’s are "atomic orbital-like"
Compact basis set (approx. 15-25 functions per atom)
Analytic integration possible for many operators.

Optimal for regular grids. Fourier transform is again a
Gaussian.

Compact support (finite extend)



Gaussian Type Orbitals: Disadvantages

Non-orthogonal basis

Linear dependencies for larger basis sets
Complicated to generate and no easy way to improve
Basis set superposition error (BSSE)

Molecules (wavefunction tails) and solids have different
requirements



KS-DFT with GTO Basis

Kinetic energy integrals: analytic
External potential integrals: analytic

Coulomb: 4 center electron repulsion integrals (ERI)
Mulliken notation :(a3|vd): analytic

XC energy and integrals: numerical integration

Overlap integrals: analytic



Hartree Energy

e Goal: Avoid calculation of ERI

e Combine all electrostatic energy terms

Electrostatic Energy

1 No(r i ,
Ecoutomb = > / / p’(r)_p() dr ar electron-electron interaction

r'|

- Z Za / ar electron-core interaction
|r — RA|

VAVA: D .
+ ion-ion interaction
Z:B |Ra — Rg|



Hartree Energy
Define a total charge density: electronic charge + Gaussian
atomic charges:

prot(r) = pe(r) + ZPA

oa(r) = Za (%) exp(—a(r - A7)

Ecoutomb = / / pmt“ _p ’;’f dr dr’ long range interaction
erfc(a(r — Ra) . .
— Z / r— R A ) pe(r) dr short range interaction
— NA
+ Z Ep.ir(Ra — RB) short range pair interaction
A<B

- Z Eqait self interaction correction



Periodic Boundary Condition (PBC)
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Optimal for condensed phase systems (avoids interface
effects)

Bloch states, Brillouin zone sample, see k-points
Energy per simulation cell
I" point simulation (Integration with single point at (0,0,0))

(@|0]5) = 221 (a(0)[O]B(L))
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Plane Waves (PW)

Definition

o(r) = \1@ exp[iG - r]

orthogonal
independent of atomic positions
naturally periodic

many functions needed



Computational Box

e Box matrix : h = [ay,ap, a3]
e Box volume : Q =deth



Lattice Vectors

e Direct lattice h = [a, a2, ag]
e Direct lattice vectors: L =/-a; +j-a> + k - a3
o Reciprocal lattice 27(h!)~" = [by, b, bg]

b,' . aj = 271'(5,'/'

e Reciprocal lattice vectors : G =i-by +j-bs + k- b3

Direct and reciprocal space are conveniently connected by
Fourier transform.

The expansion of the periodic part of the functions defined in
real space includes only the G that satisfy the PBC: Fourier
decomposition.



Properties of Plane Waves

oa(r) = % exp[iG - 1]

¢ Plane waves are periodic wrt. box h
¢ Plane waves are orthonormal

(verlea) = dar.a

¢ Plane waves are complete

Y(r) = (r+ L) T zG: G) expl[iG - 1]



Cutoff: Finite Basis Set
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Basis set size depends on volume of box and cutoff only



Real Space Grid

Sampling Theorem: Interval A = £; Nyquist critical frequency f; = 5
For a given plane wave cutoff (frequency) there is a minimum number
of equidistant real space grid points needed for the same accuracy.

Real space grid: Ri=(-1)A

Fast Fourier Transform (FFT)

¥(G) «— ¥(R)

Information contained in ¥(G) and ¥ (R) are equivalent.

Transform from ¢(G) to ¥(R) and back is done using Fourier
methods. If the number of grid points can be decomposed into small
prime numbers fast Fourier transform techniques can be used.

Fourier transform N2 operations
fast Fourier transform  Nlog[N] operations



Integrals

| = / A*(r)B(r)adr

=> A (G /exp[ iG - ] exp[iG' - r]dr
GG/
=> AY(G)B(G') Q daar
GG/
=Q) A(G)B(G)
G

Parseval’s theorem
* Q *
Q> AY(G)B(G) = NZA (R)B(R;
G i

Integrals in real space and in reciprocal space are equivalent



Long Range Term in Coulomb Energy

Eirr = 5 // prot(F)prot(r dr dr/:/VH(I’)Ptot(r) ar

Ir—r|

where Vy(r) is the solution of Poisson equation

V2Vy(r) = —4mpior(r)

Plane wave expansion of total charge density

Ptot( G)
G2

prot (¥ Z prot(G)e'®T Vy(G) = 4r

Eipr = 27rzptot ();/;tot(G)



Exchange-Correlation (XC) Functionals

Eu= [dreclt) o) =23 =@ (@)
G

exc(G) is not local in G space. Calculation in real space
requires very accurate integration scheme.
New definition of Ex.

Ee = NNQN > ec(R(R) =2} (@)n(@)

where &.(G) is the finite Fourier transform of e,.(R).

Only translations by a multiple of the grid spacing do not
change the total energy. This introduces a small modulation of
the energy hyper surface, known as "ripples".
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KS-DFT GPW Energy

Eggw = Ekiﬂ(P) + 6Eext(P) + EXL( ) + EH( ) + Eovin — Eseit

Gaussian orbital part: ®i(r) = Z CaiPar
Pag = fiCaiCsi
i
PW part: A(G) =D (#a - ¢s)(G)
ap

ptot + Z PA

(va - 98)(G) = ap(G)

o EJPW is variational in the GTO coefficients c,; alone.
e /(@) is a function of c,; and the auxiliary PW basis



Efficient Calculation of GPW Energy

Screening
Always work with primitive Gaussians
Analytic integrals — distance screening with R=A—- B
Overlap S,3 @al(r—A) <> pa(r — B)
J sparsity pattern
Tap
Density on the real space grid
S as Pasea(R)ps(R) 5 3(G)
| overlap screening
P.s is only needed with S,z sparsity pattern
va3(R) # 0 distance (radial) screening



Screening

¢ All individual screening thresholds can be controlled by
EPS_DEFAULT

CP2K_INPUT / FORCE_EVAL / DFT / QS

e Problems associated with thresholds

¢ Failure in Cholesky decomposition of overlap matrix

e Combination of basis set condition number and too big
EPS_DEFAULT

e Inaccurate charge on real space grid

e Too low PW cutoff and/or too big EPS_DEFAULT (extend of
(Pozﬁ)



Real Space Grid

Finite cutoff and computational box define a real space grid {R}

Real Space G—-Space



Gaussians and Plane Waves

(e} ) FFT _G72
Joew(-ar) T ep(-3)

)\

o Efficient screening in R space
e Exponential convergence for integration



GTOs and PW

Integration

For the integartion of a Gaussian
function with exponent 1 an
accuracy of 10710 requires an

T T ] integration range of 10 bohr, a
cutoff of 25 Rydberg, resulting in
22 integration points.

0.001
le-06f-
g
=}
m

le-09F

le-12f~

led 10 30 15 20 25

Imegrauon range Cutoff (Ry) Integration Points

~ 5000 integration points/integral batch



Multigrid
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All grids are commensurable in G—space




PW Cutoff

¢ Density expansion

PW cutoff and multigrid settings determine accuracy and
efficancy of density expansion

&MGRID ... &END MGRID section

e CUTOFF: Maximal cutoff used in the calculation
(default: 280 Ry)

e REL CUTOFF: Minimal cutoff used for Gaussian with
exponent of 1 (default: 40 Ry)

¢ NGRIDS: Total number of real space grids (cutoffs) used
(default: 4)

¢ PROGRESSION_FACTOR: factor used for cutoff reduction
in multigrids (default: 3)

o MULTIGRID_SET: T/F set multigrid cutoff from input
(default: F)

o MULTIGRID_CUTOFF: list of cutoffs for N grids



PW Cutoff

e XC functional

Accuracy of density expansion and total PW cutoff
determine XC energy accuracy

CP2K calculates gradient of density from plane wave
expansion of density

Sine interpolation may lead to negative densities in low
density regions (problem is enhanced by multigrids!)

LDA vs. GGA vs. Meta-functionals

pvs. (Vp)2/p*3 vs. 1

DENSITY_CUTOFF, GRADIENT_CUTOFF, TAU_CUTOFF
in FORCE_EVAL / DFT / XC

See more advanced options

in FORCE_EVAL / DFT / XC / XC_GRID



Coulomb Potential

G
P = o(R)TEL, 4(G) = Vu(G) = péz) FFL Vu(R) =
O(nﬁgn)
Z P}LI/X,LL Z P,uVX;w

Vi = ER: V(R)xu(R)x.(R) = ZR: V(R)X,w (R)

Efficient screening of sums using ¥,..(R).

4



Accuracy of Plane Wave Expansion

Coulomb Energy

Grid spacing [A]
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Accuracy of Plane Wave Expansion
XC Energy
PBE functional, Bulk Silicon

!
0.001

0.0001
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Accuracy and Numerical Errors

64 water, 2560 basis functions, LDA functional, 24 cores

eps_def cutoff ngrids time Energy

-12 280(30 4 1.5 x.0377660911

)
-12 400(60) 4 2.7 x.0368292349
-12 40060) 1  21.9 x.0368292282
-12 800(60) 6 3.0 x.0371244786
-12 800(60) 4 3.0 x.0371244689
-12 800(60) 1 765 x.0371244096
-8 1600(60) 6 3.7 x.0371421086
-10  1600(60) 6 4.7 x.0371296795
12 1600(60) 6 4.7 x.0371288794
14  1600(60) 6 4.9 x.0371287675



Basis Set Superposition Error (BSSE)
BSSE in liquid water

Binding energy in water (BSSE)

7 T T T
6 o ]
=5 lo N
B DZVP
g4 TZV2P 7
Er Qzv2P
% 3 QZV3P(f,d)
@ 2r o) o
T d
B =0 1 '

0
Binding energy [kcal/mol]



Non-Periodic Calculations using PW

Solving Poisson equation for non-periodic boundary
conditions

Analytic for spherical cutoff or cylindrical or 1-d cutoff
Marx and Hutter, Ab initio molecular dynamics, NIC Series

Use Wavelet solvers
Genovese et al, JCP 2006, 125 074105

Use solvers by Martyna and Tuckerman
Martyna & Tuckerman, JCP 1999, 110 2810-2821



Pseudopotentials

Why Pseudopotentials?

Reduction of basis set size
effective speedup of calculation

Reduction of number of electrons
reduces the number of degrees of freedom

Inclusion of relativistic effects
relativistic effects can be included "partially" into effective
potentials



Frozen Core Approximation
Replace inactive electronic degrees of freedom in the
Hamiltonian by an effective potential

The potential should be additive and transferable

additive most general choice: atomic pseudopotentials
transferable remove only core electrons

Core electrons are chemically inert

Core/Valence separation is often not clear
in plane wave calculations: core = all filled shells

Core wavefunctions are transfered from atomic reference
calculation

Core electrons of different atoms do not overlap



Remaining Problems

Valence wavefunctions have to be orthogonalized to core
states
— nodal structures — high plane wave cutoff

Pseudopotential should produce node-less functions and
include Pauli repulsion

Pseudopotential replaces Hartree and XC potential due to
the core electrons

XC functionals are not linear: approximation

EXC(pc + Pv) = EXC(pc) + EXC(pV)

This assumes that core and valence electrons do not
overlap. This restriction can be overcome with the
"non-linear core correction".



General Recipe

. Atomic all-electron calculation (reference state)
= ®¥(r) and ¢;.

. Pseudize ¢} = ¢F

. Calculate potential from

(T + Vi) ®7°(r) = €07°(r)

. Calculate pseudopotential by unscreening of V(r)
VPS(r) = Vi(r) — Via(nes) — Vi (nes)

VFS is state dependent !



Pseudization of Valence Wavefunctions

uér} /’;-\

uy C




Semi-local Pseudopotentials

VPS(r,r) Z VES(r)| Y (Y|
L=0

Separation of Local and Nonlocal Parts

Approximation: all potentials with L > L., are equal to VS

loc

M"

VP (r.r) = (VPS( ) = Viee () IYL(Yi] + Vige(r)

L=0

Final Form

m"tx

VES(r,r) = ViE3(r) Zavfs IAARA

loc

e Local pseudopotential V{3(r)

loc

¢ Non-local pseudopotential AVES(r)



Silicon: Radial densities

— pseudo valence
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V(1) (hartree)

Silicon: lonic pseudo potentials
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Kleinman—Bylander Form

Basis set expansion with the following approximation for the
identity:
Z | pL)(AVipL |

T (eLAVier)

where ¢, is the pseudo—atomic wavefunction from the
reference calculation.

EPS_ZZf i | AVip)wi (AVip | @)

where
wr = (prAVipr)

For an atom with s and p non-local potential this requires the
calculation of 4 times number of states integrals (AV ¢, | ¢;).



Dual-Space PP

Goedecker et al, PRB, (1996), 54, 1703
Hartwigsen et al, PRB, (1998), 58, 3641
M. Krack, TCA, (2005), 114, 145

Fully non-local: easy analytic integrals and FFTs

Vao(r) = Viee(r) + > D IpF) i (e
Lo

Gaussian form with few adjustable parameters: [F = 7]

Zion g1 [?} +exp {?2] [Ci + CoF? + C3T* + C4T°)
r V2

Vloc(r) = )

) r2
Pi(r) = Nu(m)exp [—202]

Global optimization of all parameters to fit atomic orbital
energies of occupied and virtual orbitals.



Non-Linear Core Correction (NLCC)

For many atoms (e.g. alkali atoms, transition metals) core
states overlap with valence states. Linearization assumption for
XC energy breaks down.

e Add additional states to valence
e adds more electrons

e needs higher cutoff

e Add core charge to valence charge in XC energy =
non-linear core correction (NLCC)
S.G. Louie et al., Phys. Rev. B, 26 1738 (1982)



Non-Linear Core Correction (NLCC)

Exc = Exc(N+ Neore) Where  Aeore(r) = Neore(r)  if r>ry

\
\
\
\

'\ Core Density
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‘. _ Modified Core Density

Valence Density




Basis Sets

Molecular Optimized Basis Sets (MOLOPT)
Goals
Suitable for gas and condensed phase, interfaces
Systematic increase in accuracy
Suitable for large scale simulations
Optimal for small number of functions

Well conditioned

Low BSSE for weak interactions



MOLOPT Basic idea

Use generally contracted Gaussian basis sets, including diffuse
primitives, fully optimized on molecular calculations.

e generally contracted — no lone diffuse functions, well
conditioned

e diffuse primitives — reduced BSSE

e molecularly optimized — small but accurate



MOLOPT

generally contracted family basis, all exponents used for all

angular momenta (including polarization)

6/7 primitive functions (pseudopotentials, valence only)
larger sets extend smaller sets

currently available for H-Rn

basis 1st/2nd row Hydrogen
m-SZV 1s1p 1s
m-DZVP 2s2pid 2s1p
m-TZVP 3s3p1d 3s1p
m-TZV2P 3s3p2d 3s2p
m-TZV2PX 3s3p2d1f 3s2pi1d



Condition Numbers (Liquids)

SzvV DzZVP TZV2P QzZV3P
water 1.00 2.97 4.46 5.64
BQ/MeOH 1.30 5.11 6.89 8.66
acetonitrile | 1.34 4.15 5.69 7.46
aug-DZVP aug-TZV2P aug-QZV3P
water 10.11 12.54 15.11
BQ/MeOH 11.00 13.52 13.94
acetonitrile 9.89 14.58 14.23
m-SZV  m-DZVP m-TZV2P  m-TZV2PX
water 0.83 3.20 4.18 4.27
BQ/MeOH 1.04 3.34 4.46 4.66
acetonitrile 1.11 3.23 4.18 4.36

log £ = 109 Omax /T min



Hartree-Fock Exchange: Hybrid Functionals

EXF =)D PapProla | o)

af o

e Performance problems
Density fitting methods don’t work (almost).

e Periodic boundary conditions, correct limits.
o Stability for large basis sets.

Implementation in CP2K:
M. Guidon et al. J. Chem. Phys. 128 214104 (2008)
M. Guidon et al. J. Chem. Theory Comput., 5, 3010 (2009)



Algorithms

e Truncated Coulomb operator or short range hybrids

erfc(r) iz, ro < Rg
r 0, o> R;

Stability in PBC
e Integral screening

1 1
(AP ) < |(u|(ur®)|2 - [(Ao®[Aa®) 2

Linear scaling HFX
¢ Integral compression

0.00012345566777 — 12345

Incore storage of integrals



Example

PBC, HSEO06 functional, 6-31G(d,p) basis, Opteron 64 core

(H20)32  (H20)ssa  (H20)128  (H20)256

Basis functions 768 1536 3072 6144
ERIs [millions] 761 1822 3439 6795
Memory usage [MB] 264 536 1062 2130
Compression 7.92 7.72 7.64 7.66

CPU-time [s] 25 64 174 459




Auxiliary Density Matrix Method (ADMM)

Ex(P) = Ex(D, P) = Ex(D) + E;*™(P) — E;*™(D)

T T T T T T T T T
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g
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Fraction Hartree-Fock exchange

M. Guidon et al, J. Chem. Theory Comput., 2010, 6, pp 2348-2364



Benchmark: Rubredoxin

Pseudopotentials, DZVP Basis (22910 bfs), 3897 electrons

Basis set CPU Functional Timings [s]
Initialization SCF Step
DZVP 256 BLYP 230 117
DZVP/FIT3 256 B3LYP 604 246
DZVP/FIT3 512 B3LYP 305 140

Overhead of ADMM hybrid calculation: ~ 2 — 4x




ADMM Methods

e M. Guidon et al, J. Chem. Theory Comput., 2010, 6, 2348-2364
o ADMM1 : projection and full orthonormalization

o ADMM2 : projection only

e Block-ADMM : use selected blocks of P matrix

e P. Merlot et al, J Chem Phys. 2014, 141 094104
¢ ADMMQ : projection and normalization

o ADMMS : projection and normalization and scaling

o ADMMP : projection and normalization and selected scaling



ADMM Example

Bandgap of Diamond
method number of integrals gap [eV]
PBE (PBS) 417
PBE (ABS) 4.37
PBEO (PBS) 40 787 850 778 591 6.07
PBEO (ABS) 23 561 509 497 6.25
PBEO ADMMA 24 816 897 009 6.03
PBEO ADMM2 24 795 460 638 6.02




Solving the KS Equations

Fix Point Methods

. initial guess n™(r)

. calculate potential V(r)

. diagonalize KS matrix, get ¢

. calculate new density n°"

- if | n™ — n° | < e stop

. calculate new density from n™ and n°* (mixing)

. go backto 2



Direct Minimization Methods

Minimum [Exs(c)]  with the constraint > " c};coj =

Lagrange function
Exs[c, N = Es(c) — Tr{/\(cTc — 1)}

Gradient

oF,
c‘)ci(: = FapCon— ) _ Com (Z CE’mFﬂvcvn)
« 8 m By




Orbital Transformation (OT) Method

J. VandeVondele and J. Hutter, JCP 118 4365 (2003)

Direct optimization technique

Similar to orbital rotation method

Constraint is only linear

Memory MN M Number of basis functions

Scaling  MN? N Number of occupied orbitals



Set of reference occupied orbitals: Cy

New variables X
C(X) = CycosU + XU 'sinU
1/2
U= (szx) /

Linear constraint X'sc,=0

Standard optimization with line serach and preconditioning



OT versus Diag-DIIS

—

S le-0lf

le-02f

le-03
i oT

le-05kF

Le-06f

© le-07f

PP ERTTTS EERTTTS T [PETTr ErErrre Errre e

convergence (energy a.

5000 10000 15000 20000

time (s)

256 H20 TZV(2d,2p) 10240 BF on 4 CPUs SUN ultrasparc



Direct Inversion in lterative Subspace (DIIS)

DIIS: Acceleration method for iterative sequences.

Basic idea : From a series of steps in an optimization
procedure, try to guess a better trial vector.

In DIIS we solve exactly (by direct inversion) an optimality
condition within the subspace of the parameter vectors
generated by the iterations.

Assume we have generated a sequence of M parameter
vectors {Xm } and that we are able to guess for each of the
vectors its difference em to the stationary point.

Ansatz: Find the best linear combination of vectors
Xme1 = 2.1, cix; with the constraint =M. ¢; = 1.



DIIS

Ansatz

M M M
< Z c,-ei| Z ciej > with Z ci=1
i=1 j=1 i=1

where < .|. > is a suitably defined scalar product. This leads to
a system of linear equations with b; =< e;|e; >

Min

bi1 b2 ... by -1 Cq 0
by b ... by —1 Co 0
bm‘] bm2 P bmm _1 Cm 0

1 -1 ... -1 0 A —1



What to take for the error vectors?

Any measure for the distance from the stationary point.

AO basis sets
Hartree—Fock and Kohn—Sham Methods (Pulay)

{e}j=>_ (FxPwSj — SikPxFy)
P

GDIIS (based on Newton—Raphson)

e; = —Pg(x;)



Scaling of GPW Calculations

e N: Number of occupied orbitals, number of electrons
e M: Number of basis functions

Kohn-Sham matrix O(MilogN)
Density matrix (incomplete sparse O(MN)

OT optimization O(MN?)



Time MD Step [s]

100

System Size Scaling

&—9 512 water
G—9O 256 water
G—=O 128 water
O—=© 64 water
—=O 32 water

67 % LinAlg

1l

58 % LinAlg b

X3.4

43 % LinAlg

25 % LinAlg
14 % LinAlg

] 1
64 128 256 512 1024
Numer of Cores



Time per MD steip (seconds)

Efficiency: GGA Functionals

H2(-2048
1 ps/day
I\'-.._.iu.-wzta
"-#-XT3 Stage 0 (26’05)___ 1 10 os/day
~#-XC30 ARCHER (2013) ™,

05 :
1 10 100 1000 10000

Number of cores



Linear Scaling KS-DFT

P = sign (sf1 H- M/) S

Calculate S~ and sign(A) using Newton-Schultz iterations

1A (3/ — A,?)

Ay =
i+1 )

Only matrix multiplications required.



Wall time [min]

Linear Scaling
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PAO-ML

Table 1. Timings (seconds) for the Complete CP2K Energy
Calculation (Full) and the Matrix Multiplication Part (mult)
on a System Consisting of ~20000 Atoms, As Described in
the Text”

nodes 64 100 169 256 400
PAO-ML
full 87 58 41 33 24
mult 23 17 13 11 8
DZVP-MOLOPT-GTH
full 5215 2765 1996 1840 1201
mult 5036 2655 1922 1779 1165

“The PAO-ML method outperforms a standard DFT run with a
DZVP-MOLOPT-GTH basis by a factor of at least 50X.

O. Schiit, J. VandeVondele, J. Chem. Theory Comput. 2018, 14, 4168
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