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Kohn–Sham (KS) Density Functional Theory (DFT)

• Hohenberg–Kohn Theorem I
The total energy can be calculated from a universal
functional of the density.
Existence theorem

• Hohenberg–Kohn Theorem II
The correct density minimizes the energy functional.
Variational principle.

• Kohn–Sham Theorem
For each density exists a system of non-interacting
particles in a local external potential with the same density.
Orbital picture.



Kohn–Sham DFT (II)
Minimization with constraints

Min E({Φi})∫
Φi(r)Φj(r)dr = δij

∫
ρ(r)dr = N

E({Φi}) = −
∑

i

fi
2

∫
Φi∇iΦidr +

∫
Vext(r)ρ(r)dr

+
1
2

∫∫
ρ(r)ρ(r ′)
|r − r ′|

dr dr ′ + Exc[ρ]

ρ(r) =
∑

i

fi |Φi(r)|2



Kohn–Sham DFT (III)

• Kinetic energy
Ekin = −1

2
∑

i fi(Φi |∇2|Φi)

• External energy (electron-nuclei interaction)
Eext =

∫
Vext(r)ρ(r) dr

• Hartree (classical Coulomb) energy
EH =

∫ ∫ ρ(r)ρ(r ′)
|r−r ′| dr ′ dr

• Exchange-correlation (non-classical Coulomb) (XC) energy
Exc =

∫
F [ρ] dr

• Orbital orthogonality constraint
(Φi |Φj) = δij

• Electron number constraint∑
i fi(Φi |Φi) = N



Linear Combination of Atomic Orbitals (LCAO)

Basis set Φi(r) =
∑
α

cαi ϕα(r)

Overlap Sαβ =

∫
dr ϕ?α(r)ϕβ(r)

Orthogonality
∫

dr Φ?
i (r)Φj(r) =

∑
αβ

c?αi Sαβ cβj = δij

Density matrix Pαβ =
∑

i

fi cαic?βi

Density ρ(r) =
∑
αβ

Pαβ ϕα(r)ϕ?β(r)

Energy E = Minc[Ekin(c) + Eext(ρ) + EH(ρ) + Exc(ρ)]



Gaussian Type Orbitals (GTO): General

• Primitive function

ϕ(r) = r lYlm(r̂) exp[−α(r − A)2]

• Contracted GTO

χ(r) =
∑

k

dkϕk (r)

Contraction coefficients dk and exponents are fixed.
Contraction over functions with same angular momentum.



Gaussian Type Orbitals: Advantages

• GTO’s are "atomic orbital-like"

• Compact basis set (approx. 15-25 functions per atom)

• Analytic integration possible for many operators.

• Optimal for regular grids. Fourier transform is again a
Gaussian.

• Compact support (finite extend)



Gaussian Type Orbitals: Disadvantages

• Non-orthogonal basis

• Linear dependencies for larger basis sets

• Complicated to generate and no easy way to improve

• Basis set superposition error (BSSE)

• Molecules (wavefunction tails) and solids have different
requirements



KS-DFT with GTO Basis

• Kinetic energy integrals: analytic

• External potential integrals: analytic

• Coulomb: 4 center electron repulsion integrals (ERI)
Mulliken notation :(αβ|γδ): analytic

• XC energy and integrals: numerical integration

• Overlap integrals: analytic



Hartree Energy

• Goal: Avoid calculation of ERI

• Combine all electrostatic energy terms

Electrostatic Energy

ECoulomb =
1
2

∫ ∫
ρ(r)ρ(r ′)
|r − r ′|

dr dr ′ electron-electron interaction

−
∑

A

ZA

∫
ρ(r)

|r − RA|
dr electron-core interaction

+
∑
A<B

ZAZB

|RA − RB|
ion-ion interaction



Hartree Energy
Define a total charge density: electronic charge + Gaussian
atomic charges:

ρtot (r) = ρe(r) +
∑

A

ρA(r)

ρA(r) = ZA

(α
π

)3/2
exp(−α(r − A)2)

ECoulomb =
1
2

∫ ∫
ρtot (r)ρtot (r ′)
|r − r ′|

dr dr ′ long range interaction

−
∑

A

ZA

∫
erfc(α(r − RA))

|r − RA|
ρe(r) dr short range interaction

+
∑
A<B

Epair(RA − RB) short range pair interaction

−
∑

A

Eself self interaction correction



Periodic Boundary Condition (PBC)

• Optimal for condensed phase systems (avoids interface
effects)

• Bloch states, Brillouin zone sample, see k-points

• Energy per simulation cell

• Γ point simulation (Integration with single point at (0,0,0))

• (α|O|β)→
∑

L(α(0)|O|β(L))



Plane Waves (PW)

Definition

ϕ(r) =
1√
Ω

exp[iG · r]

+ orthogonal

+ independent of atomic positions

± naturally periodic

– many functions needed



Computational Box

a

a

a

1

2

3

• Box matrix : h = [a1,a2,a3]

• Box volume : Ω = det h



Lattice Vectors

• Direct lattice h = [a1,a2,a3]

• Direct lattice vectors : L = i · a1 + j · a2 + k · a3

• Reciprocal lattice 2π(ht )−1 = [b1,b2,b3]

bi · aj = 2πδij

• Reciprocal lattice vectors : G = i · b1 + j · b2 + k · b3

Direct and reciprocal space are conveniently connected by
Fourier transform.
The expansion of the periodic part of the functions defined in
real space includes only the G that satisfy the PBC: Fourier
decomposition.



Properties of Plane Waves

ϕG(r) =
1√
Ω

exp[iG · r]

• Plane waves are periodic wrt. box h
• Plane waves are orthonormal

〈ϕG′ |ϕG〉 = δG′,G

• Plane waves are complete

ψ(r) = ψ(r + L) =
1√
Ω

∑
G

ψ(G) exp[iG · r]



Cutoff: Finite Basis Set

1
2

G2 ≤ Ecut

NPW ≈
1

2π2 Ω E3/2
cut [a.u.]

Basis set size depends on volume of box and cutoff only



Real Space Grid

Sampling Theorem: Interval ∆ = L
N ; Nyquist critical frequency fc = 1

2∆
For a given plane wave cutoff (frequency) there is a minimum number
of equidistant real space grid points needed for the same accuracy.

Real space grid: Ri = (i − 1)∆

Fast Fourier Transform (FFT)

ψ(G)←→ ψ(R)

Information contained in ψ(G) and ψ(R) are equivalent.
Transform from ψ(G) to ψ(R) and back is done using Fourier
methods. If the number of grid points can be decomposed into small
prime numbers fast Fourier transform techniques can be used.

Fourier transform N2 operations
fast Fourier transform N log[N] operations



Integrals

I =

∫
Ω

A?(r)B(r)dr

=
∑
GG′

A?(G)B(G′)
∫

exp[−iG · r] exp[iG′ · r]dr

=
∑
GG′

A?(G)B(G′) Ω δGG′

= Ω
∑

G

A?(G)B(G)

Parseval’s theorem

Ω
∑

G

A?(G)B(G) =
Ω

N

∑
i

A?(Ri)B(Ri)

Integrals in real space and in reciprocal space are equivalent



Long Range Term in Coulomb Energy

ELRT =
1
2

∫ ∫
ρtot (r)ρtot (r ′)
|r − r ′|

dr dr ′ =

∫
VH(r)ρtot (r) dr

where VH(r) is the solution of Poisson equation

∇2VH(r) = −4πρtot (r)

Plane wave expansion of total charge density

ρtot (r) =
∑

G

ρtot (G)eiG·r VH(G) = 4π
ρtot (G)

G2

ELRT =
2π
Ω

∑
G

ρ∗tot (G)ρtot (G)

G2



Exchange-Correlation (XC) Functionals

Exc =

∫
dr εxc(r) ρ(r) = Ω

∑
G

εxc(G)ρ?(G)

εxc(G) is not local in G space. Calculation in real space
requires very accurate integration scheme.
New definition of Exc

Exc =
Ω

NxNyNz

∑
R

εxc(R)ρ(R) = Ω
∑

G

ε̃xc(G)n(G)

where ε̃xc(G) is the finite Fourier transform of εxc(R).
Only translations by a multiple of the grid spacing do not
change the total energy. This introduces a small modulation of
the energy hyper surface, known as "ripples".



Energy and Force of He Atom



KS-DFT GPW Energy

EGPW
KS = Ekin(P) + δEext(P) + Exc(ρ̃) + EH(ρ̃) + Eovrl − Eself

Gaussian orbital part: Φi (r) =
∑
α

cαiϕα

Pαβ =
∑

i

ficαicβi

PW part: ρ̃(G) =
∑
αβ

(ϕα · ϕβ)(G)

ρ̃tot(G) = ρ̃(G) +
∑

A

ρA(G)

(ϕα · ϕβ)(G) = ϕαβ(G)

• EGPW
KS is variational in the GTO coefficients cαi alone.

• ρ̃(G) is a function of cαi and the auxiliary PW basis



Efficient Calculation of GPW Energy
Screening

• Always work with primitive Gaussians

• Analytic integrals→ distance screening with R = A− B

Overlap Sαβ ϕα(r − A)↔ ϕβ(r − B)

↓ sparsity pattern

Tαβ

• Density on the real space grid∑
αβ Pαβϕα(R)ϕβ(R)

FFT→ ρ̃(G)

↓ overlap screening

Pαβ is only needed with Sαβ sparsity pattern

• ϕαβ(R) 6= 0 distance (radial) screening



Screening

• All individual screening thresholds can be controlled by
EPS_DEFAULT

CP2K_INPUT / FORCE_EVAL / DFT / QS

• Problems associated with thresholds

• Failure in Cholesky decomposition of overlap matrix

• Combination of basis set condition number and too big
EPS_DEFAULT

• Inaccurate charge on real space grid

• Too low PW cutoff and/or too big EPS_DEFAULT (extend of
ϕαβ)



Real Space Grid

Finite cutoff and computational box define a real space grid {R}



Gaussians and Plane Waves

√
α

π
exp

(
−αr2

)
FFT−→ exp

(
−G2

4α

)

• Efficient screening in R space
• Exponential convergence for integration



GTOs and PW

Integration

For the integartion of a Gaussian
function with exponent 1 an
accuracy of 10−10 requires an
integration range of 10 bohr, a
cutoff of 25 Rydberg, resulting in
22 integration points.

≈ 5000 integration points/integral batch



Multigrid



PW Cutoff
• Density expansion

PW cutoff and multigrid settings determine accuracy and
efficancy of density expansion

&MGRID . . . &END MGRID section

• CUTOFF: Maximal cutoff used in the calculation
(default: 280 Ry)

• REL_CUTOFF: Minimal cutoff used for Gaussian with
exponent of 1 (default: 40 Ry)

• NGRIDS: Total number of real space grids (cutoffs) used
(default: 4)

• PROGRESSION_FACTOR: factor used for cutoff reduction
in multigrids (default: 3)

• MULTIGRID_SET: T/F set multigrid cutoff from input
(default: F)

• MULTIGRID_CUTOFF: list of cutoffs for N grids



PW Cutoff

• XC functional

Accuracy of density expansion and total PW cutoff
determine XC energy accuracy

CP2K calculates gradient of density from plane wave
expansion of density

Sine interpolation may lead to negative densities in low
density regions (problem is enhanced by multigrids!)

LDA vs. GGA vs. Meta-functionals
ρ vs. (∇ρ)2/ρ4/3 vs. τ

DENSITY_CUTOFF, GRADIENT_CUTOFF, TAU_CUTOFF
in FORCE_EVAL / DFT / XC

See more advanced options
in FORCE_EVAL / DFT / XC / XC_GRID



Coulomb Potential

P → ρ(R)
FFT−−−→ ρ(G)→ VH(G) =

ρ(G)

G2
FFT−−−→︸ ︷︷ ︸

O(n log n)

VH(R)→ V

ρ(R) =
∑
µν

Pµνχµ(R)χν(R) =
∑
µν

Pµνχ̄µν(R)

Vµν =
∑

R

V (R)χµ(R)χν(R) =
∑

R

V (R)χ̄µν(R)

Efficient screening of sums using χ̄µν(R).



Accuracy of Plane Wave Expansion

Coulomb Energy



Accuracy of Plane Wave Expansion
XC Energy

PBE functional, Bulk Silicon



Accuracy and Numerical Errors

64 water, 2560 basis functions, LDA functional, 24 cores

eps_def cutoff ngrids time Energy
-12 280(30) 4 1.5 x.0377660911
-12 400(60) 4 2.7 x.0368292349
-12 400(60) 1 21.9 x.0368292282
-12 800(60) 6 3.0 x.0371244786
-12 800(60) 4 3.0 x.0371244689
-12 800(60) 1 76.5 x.0371244096
-8 1600(60) 6 3.7 x.0371421086

-10 1600(60) 6 4.7 x.0371296795
-12 1600(60) 6 4.7 x.0371288794
-14 1600(60) 6 4.9 x.0371287675



Basis Set Superposition Error (BSSE)
BSSE in liquid water

-30 -20 -10 0
Binding energy [kcal/mol]

0

1

2

3

4

5

6

7

B
SS

E
 [

kc
al

/m
ol

]

DZVP
TZV2P
QZV2P
QZV3P(f,d)

Binding energy in water (BSSE)



Non-Periodic Calculations using PW

• Solving Poisson equation for non-periodic boundary
conditions

• Analytic for spherical cutoff or cylindrical or 1-d cutoff
Marx and Hutter, Ab initio molecular dynamics, NIC Series

• Use Wavelet solvers
Genovese et al, JCP 2006, 125 074105

• Use solvers by Martyna and Tuckerman
Martyna & Tuckerman, JCP 1999, 110 2810-2821



Pseudopotentials

Why Pseudopotentials?

• Reduction of basis set size
effective speedup of calculation

• Reduction of number of electrons
reduces the number of degrees of freedom

• Inclusion of relativistic effects
relativistic effects can be included "partially" into effective
potentials



Frozen Core Approximation

• Replace inactive electronic degrees of freedom in the
Hamiltonian by an effective potential

• The potential should be additive and transferable
additive most general choice: atomic pseudopotentials

transferable remove only core electrons

• Core electrons are chemically inert

• Core/Valence separation is often not clear
in plane wave calculations: core = all filled shells

• Core wavefunctions are transfered from atomic reference
calculation

• Core electrons of different atoms do not overlap



Remaining Problems

• Valence wavefunctions have to be orthogonalized to core
states
→ nodal structures→ high plane wave cutoff

• Pseudopotential should produce node-less functions and
include Pauli repulsion

• Pseudopotential replaces Hartree and XC potential due to
the core electrons

• XC functionals are not linear: approximation

EXC(ρc + ρv) = EXC(ρc) + EXC(ρv)

This assumes that core and valence electrons do not
overlap. This restriction can be overcome with the
"non–linear core correction".



General Recipe

1. Atomic all–electron calculation (reference state)
⇒ Φv

i (r) and εi .

2. Pseudize Φv
i ⇒ ΦPS

i

3. Calculate potential from

(T + Vi(r)) ΦPS
i (r) = εiΦ

PS
i (r)

4. Calculate pseudopotential by unscreening of Vi(r)

V PS
i (r) = Vi(r)− VH(nPS)− VXC(nPS)

V PS
i is state dependent !



Pseudization of Valence Wavefunctions

r
r

p

c

V(r)

V (r)p

u(r)

u (r)



Semi-local Pseudopotentials

V PS(r, r′) =
∞∑

L=0

V PS
L (r)|YL〉〈YL|

Separation of Local and Nonlocal Parts

Approximation: all potentials with L > Lmax are equal to V PS
loc

V PS(r, r′) =
Lmax∑
L=0

(
V PS

L (r)− V PS
loc(r)

)
|YL〉〈YL|+ V PS

loc(r)

Final Form

V PS(r, r′) = V PS
loc(r) +

Lmax∑
L=0

∆V PS
L (r)|YL〉〈YL|

• Local pseudopotential V PS
loc(r)

• Non-local pseudopotential ∆V PS
L (r)







Kleinman–Bylander Form

Basis set expansion with the following approximation for the
identity:

1 =
∑

L

| ϕL〉〈∆VLϕL |
〈ϕL∆VLϕL〉

where ϕL is the pseudo–atomic wavefunction from the
reference calculation.

EPS =
∑

L

∑
i

fi〈Φi | ∆VLϕL〉ωL〈∆VLϕL | Φi〉

where
ωL = 〈ϕL∆VLϕL〉

For an atom with s and p non-local potential this requires the
calculation of 4 times number of states integrals 〈∆VLϕL | Φi〉.



Dual-Space PP
• Goedecker et al, PRB, (1996), 54, 1703

Hartwigsen et al, PRB, (1998), 58, 3641
M. Krack, TCA, (2005), 114, 145

• Fully non-local: easy analytic integrals and FFTs

Vpp(r) = Vloc(r) +
∑

L

∑
ij

|pL
i 〉hL

ij 〈pL
j |

• Gaussian form with few adjustable parameters: [r̄ = r
rc

]

Vloc(r) = −Zion

r
erf
[

r̄√
2

]
+exp

[
− r̄2

2

] [
C1 + C2 r̄2 + C3 r̄4 + C4r̄6]

pi
L(r) = NiL(rl )exp

[
− r2

2r2
l

]
• Global optimization of all parameters to fit atomic orbital

energies of occupied and virtual orbitals.



Non-Linear Core Correction (NLCC)

For many atoms (e.g. alkali atoms, transition metals) core
states overlap with valence states. Linearization assumption for
XC energy breaks down.

• Add additional states to valence
• adds more electrons

• needs higher cutoff

• Add core charge to valence charge in XC energy⇒
non–linear core correction (NLCC)
S.G. Louie et al., Phys. Rev. B, 26 1738 (1982)



Non-Linear Core Correction (NLCC)

Exc = Exc(n + ñcore) where ñcore(r) = ncore(r) if r > r0

Valence Density

Core Density

Modified Core Density



Basis Sets

Molecular Optimized Basis Sets (MOLOPT)

Goals

• Suitable for gas and condensed phase, interfaces

• Systematic increase in accuracy

• Suitable for large scale simulations
Optimal for small number of functions
Well conditioned

• Low BSSE for weak interactions



MOLOPT Basic idea

Use generally contracted Gaussian basis sets, including diffuse
primitives, fully optimized on molecular calculations.

• generally contracted −→ no lone diffuse functions, well
conditioned

• diffuse primitives −→ reduced BSSE

• molecularly optimized −→ small but accurate



MOLOPT

• generally contracted family basis, all exponents used for all
angular momenta (including polarization)

• 6/7 primitive functions (pseudopotentials, valence only)
• larger sets extend smaller sets
• currently available for H-Rn

basis 1st/2nd row Hydrogen
m-SZV 1s1p 1s
m-DZVP 2s2p1d 2s1p
m-TZVP 3s3p1d 3s1p
m-TZV2P 3s3p2d 3s2p
m-TZV2PX 3s3p2d1f 3s2p1d



Condition Numbers (Liquids)

SZV DZVP TZV2P QZV3P
water 1.00 2.97 4.46 5.64
BQ/MeOH 1.30 5.11 6.89 8.66
acetonitrile 1.34 4.15 5.69 7.46

aug-DZVP aug-TZV2P aug-QZV3P
water 10.11 12.54 15.11
BQ/MeOH 11.00 13.52 13.94
acetonitrile 9.89 14.58 14.23

m-SZV m-DZVP m-TZV2P m-TZV2PX
water 0.83 3.20 4.18 4.27
BQ/MeOH 1.04 3.34 4.46 4.66
acetonitrile 1.11 3.23 4.18 4.36

logκ = logσmax/σmin



Hartree-Fock Exchange: Hybrid Functionals

EHF
X =

∑
αβ

∑
γσ

PαβPγσ(αγ | βσ)

• Performance problems
Density fitting methods don’t work (almost).

• Periodic boundary conditions, correct limits.
• Stability for large basis sets.

Implementation in CP2K:

M. Guidon et al. J. Chem. Phys. 128 214104 (2008)

M. Guidon et al. J. Chem. Theory Comput., 5, 3010 (2009)



Algorithms

• Truncated Coulomb operator or short range hybrids

erfc(r)

r

1
r12
, r12 < Rc

0, r12 > Rc

Stability in PBC
• Integral screening

(µνa|λbσb+c) ≤ |(µνa|(µνa)|
1
2 · |(λσc|λσc)|

1
2

Linear scaling HFX
• Integral compression

0.00012345566777 −→ 12345

Incore storage of integrals



Example

PBC, HSE06 functional, 6-31G(d,p) basis, Opteron 64 core

(H2O)32 (H2O)64 (H2O)128 (H2O)256

Basis functions 768 1536 3072 6144

ERIs [millions] 761 1822 3439 6795

Memory usage [MB] 264 536 1062 2130

Compression 7.92 7.72 7.64 7.66

CPU-time [s] 25 64 174 459



Auxiliary Density Matrix Method (ADMM)

Ex (P) ≈ Ẽx (D,P) = Ex (D) + EPBEX
x (P)− EPBEX

x (D)

D = f (P)

M. Guidon et al, J. Chem. Theory Comput., 2010, 6, pp 2348-2364



Benchmark: Rubredoxin

Pseudopotentials, DZVP Basis (22910 bfs), 3897 electrons

Basis set CPU Functional Timings [s]

Initialization SCF Step

DZVP 256 BLYP 230 117

DZVP/FIT3 256 B3LYP 604 246

DZVP/FIT3 512 B3LYP 305 140

Overhead of ADMM hybrid calculation: ≈ 2− 4×



ADMM Methods

• M. Guidon et al, J. Chem. Theory Comput., 2010, 6, 2348-2364
• ADMM1 : projection and full orthonormalization

• ADMM2 : projection only

• Block-ADMM : use selected blocks of P matrix

• P. Merlot et al, J Chem Phys. 2014, 141 094104
• ADMMQ : projection and normalization

• ADMMS : projection and normalization and scaling

• ADMMP : projection and normalization and selected scaling



ADMM Example

Bandgap of Diamond



Solving the KS Equations

Fix Point Methods

1. initial guess nin(r)

2. calculate potential V (r)

3. diagonalize KS matrix, get cout

4. calculate new density nout

5. if | nin − nout |≤ ε stop

6. calculate new density from nin and nout (mixing)

7. go back to 2



Direct Minimization Methods

Minimum [EKS(c)] with the constraint
∑
α

c?αicαj = δij

Lagrange function

ẼKS[c,Λ] = EKS(c)− Tr
{

Λ(c†c − 1)
}

Gradient

∂ẼKS

∂c?αn
=
∑
β

Fαβcβn −
∑

m

cαm

∑
βγ

c?βmFβγcγn





Orbital Transformation (OT) Method

J. VandeVondele and J. Hutter, JCP 118 4365 (2003)

• Direct optimization technique

• Similar to orbital rotation method

• Constraint is only linear

•
Memory MN M Number of basis functions

Scaling MN2 N Number of occupied orbitals



• Set of reference occupied orbitals: C0

• New variables X

C(X ) = C0 cos U + XU−1 sin U

U =
(

X T SX
)1/2

• Linear constraint X T SC0 = 0

• Standard optimization with line serach and preconditioning





Direct Inversion in Iterative Subspace (DIIS)

DIIS: Acceleration method for iterative sequences.

Basic idea : From a series of steps in an optimization
procedure, try to guess a better trial vector.

In DIIS we solve exactly (by direct inversion) an optimality
condition within the subspace of the parameter vectors
generated by the iterations.
Assume we have generated a sequence of M parameter
vectors {xm}M1 and that we are able to guess for each of the
vectors its difference em to the stationary point.

Ansatz: Find the best linear combination of vectors
xM+1 =

∑M
i=1 cixi with the constraint

∑M
i=1 ci = 1.



DIIS

Ansatz

Min

< M∑
i=1

ciei|
M∑

j=1

cjej >

 with
M∑

i=1

ci = 1

where < .|. > is a suitably defined scalar product. This leads to
a system of linear equations with bij =< ei|ej >

b11 b12 . . . b1m −1
b21 b22 . . . b2m −1

...
...

. . .
...

...
bm1 bm2 . . . bmm −1
−1 −1 . . . −1 0




c1
c2
...

cm
λ

 =


0
0
...
0
−1





What to take for the error vectors?

Any measure for the distance from the stationary point.

AO basis sets
Hartree–Fock and Kohn–Sham Methods (Pulay)

{e}ij =
∑

kl

(
FikPklSlj − SikPklFlj

)
GDIIS (based on Newton–Raphson)

ei = −Pg(xi)



Scaling of GPW Calculations

• N: Number of occupied orbitals, number of electrons
• M: Number of basis functions

Kohn-Sham matrix O(MlogN)

Density matrix (incomplete sparse O(MN)

OT optimization O(MN2)



System Size Scaling



Efficiency: GGA Functionals

10 ps/day

50 ps/day

1 ps/day



Linear Scaling KS-DFT

P = sign
(

S−1H − µI
)

S−1

Calculate S−1 and sign(A) using Newton-Schultz iterations

Ai+1 =
1
2

Ai

(
3I − A2

i

)
Only matrix multiplications required.



Linear Scaling



Linear Scaling
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