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Machine Learning @ Cloud

Exponential Complexity growth!

M DNNs in academia 4 DNNs in industry Dig_ital
» DNNs in academia with optimization Reasonin

Nvidia’s network
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ML: HW reinassance!
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DNN training as a workload

= Inference
= Well covered
= Compute layer, only keep results, advance

= Training
* Long data dependency chain
= Intermediate results must be stored ~ Forward Pass \ N N N
= Cannot fuse ReLU with convolution

Backward Pass

= Derivatives tricky (ReLU, Maxpool) iy ,,:,,_,A,y
Y

= Offloading Ab; Ab, A6,
= Convolution needs 6 loops
= Accelerator must have high autonomy

= Processor cores orchestrate training + higher precision & dynamic range requirements!
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Downside of GPUs for Training

= GPUs are the workhorse of data center DNN training
= They generally have a TDP of 200-300 W
= Peak compute reaches 15 Tflop/s these days

= Only 4.9% of that power estimated to be spent in the FPUs [1]:
= [1] reports 2.9%, but their kernels don’t reach TDP/max perf.

= |n dubio pro Invidia: We scale power to assume modern GPUs can
reach TDP at max perf. (making them more efficient).

= In practice GPU efficiency hard to estimate:
= GPUs may not be able to reach max compute before hitting TDP
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Graph extracted and cropped from [1].

[11 S. Hong and H. Kim, “An integrated gpu power and performance model,” in ACM SIGARCH Computer Architecture News, 2010.
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Network Training Accelerator (NTX)

= We propose NTX [1]
=  Streaming floating-point co-processor

= Efficiently performs float32 FMAC
» Fast multiply-accumulate, single cycle

= Address generation unit ensures low control overhead
= 5 nested hardware loops
= 3 address generators

=  Many common C/C++ loop nests map well to this architecture
= 8 NTX paired up per associated processor core

* Floating-point operation makes accelerator a drop-in
replacement for GPUs for training.

= Based on lessons learned from Neurostream [2]

[1] Schuiki et al, “A Scalable Near-Memory Architecture for Training Deep Neural Networks on Large In-Memory Datasets,”, in IEEE TC 2019.
[2] Azarkhish et al, "Neurostream: Scalable and energy efficient deep learning with smart memory cubes,” in IEEE TPDS 2018.
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Architecture FMAC

32 bit float

(o

FMAC partial carry-save (PCS)
arithmetic with 2 segments
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Architecture Address Generation

= 5 nested hardware loop counters

Used as read addresses Used as write address
= 16 bit counter register
= Configurable number of iterations
= Once last iteration reached: @ - : «
. RAddro 4
Reset counter to 0 / \ (also used\&\mit) RAddr1 \ KSTAddr
= Enable next counter for one cycle N ! :
. . AGUO AGUT XGUZ
= 3 address generatlon units Base, Strides[0..4] Base, Strides[0..4] Base, Strides[0..4]

32 bit address register
Each has 5 configurable strides, one per loo 16b Cnt 16b Cnt 16b Cnt 16b Cnt 16b Cnt
9 ’ P P En Done WP En Done HP| En Done W En Done WP En Done

One stride added to register per cycle LO L1 L2 L3 L4
Stride corresponds to the highest enabled loop AGUs & HwLoops

= Allows for complex address patterns ‘

Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET




Architecture Coprocessor

= Processor configures operation via memory-mapped registers
= Controller issues AGU, HWL, and FPU micrgfcommands based on configuration
= Reads/writes data via 2 memory ports

opefand and 1 writeback streams)

LO L2

= FIFOs help buffer data path and me lateficies
@1.5GHz RAdArO \\ >
L : (also used for Init) | RAddr1 ST Addr
L > : 5
FMAC I - (PCS)
& arithm Carr}tfhsg‘;zgments > ‘ ‘ ‘
AGUO AGUT AGU2 . | &
Base, Strides[0..4] Base, Strig€s[0..4] Base, Strides[0..4] - & N 5
5 X S[7|ES > H‘
16bcCnt| [16bCnt] [febcnt| [16bCnt| [16bCnt N
En Done M| En Done En Done P En Done P En Don
L4

L3

Loop Done Signals

A To/From RISC-V Processor (32bit port)

Con tro!ler
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Cmd & 9
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v
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Architecture Processing Cluster

= 1 processor core controls 8 NTX coprocessors

el

Interconnect

A 4

y N

128kB L2

SoC
@750MHz
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Architecture HMC Integration

= HMC is split into independent vaults (DRAM controllers)
= Main interconnect routes traffic between serial links and vaults

= (Clusters attach to this interconnect
= Full view of the HMC memory space

= Access to other HMCs via serial links

(__DRAMBank ) (___ DRAMBank ) (___ DRAMBank ) (__ DRAMBank ) (__ DRAMBank ) (___ DRAMBank )
(__DramMBank ) (___DRAMBank ) (___DRAMBank ) (___DRAMBank ) (___ DRAMBank ) (__ DRAMBank )
(__DrRAMBank ) (___DRAMBank ) (__ DRAMBank ) (__ DRAMBank ) (__ DRAMBank ) (___ DRAMBank )

DRAM Bank DRAM Bank DRAM Bank DRAM Bank DRAM Bank DRAM Bank ﬁ .
1024bit per page

Vault Ctrl 0 Vault Ctrl 1

p Master Ports

Vault Ctrl 2

Vault Ctrl 3

Main LoB Interconnect (256b @ 1GHz)

Vault Ctrl 4

Vault Ctrl 5

i

32
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Y

Y

Y

Y
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32
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IThrough-SiIicon vias (TSVs)

HMC 2.0
4 DRAM Dies

1GB Capacity

Vault Ctrl 31

Serial ||Serial | Serial || Serial
Link 0 [ Link 1 ||| Link 2 {{| Link 3

Considered Configurations

NTX 16 (small)
m=16 clusters

n=1 cores per cluster
k=8 NTXs per cluster
NTX @ 1.5 GHz

NTX 64 (big)
m=64 clusters
n=1 cores per cluster

k=8 NTXs per cluster
NTX @ 1.5 GHz
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Programming Model Loops

= Up to 5 nested loops can be offloaded to NTX 5 £
) ) »>for (13 = 0; 13 < L3; 13++) { v
= Loops should describe a reduction for best performance Tiex = [*AGUG|*AGU1|*AGU2|0.0]; S
- '§1 for (12 = @; 12 < L2; 12++) { =
= Covers convolutions, fully connected layers, and more S im N
e o : : : 303 IS
= Accumulator initialization and writeback is configurable Zigl for (11 = 05 11 < L1; 11++) { g
= For example a DNN convolution: Perform outermost loop e for (16 = 0; 10 < Lo; 10++) { §
) level on processor core. miviminieio g = [* * * )
For (int k = 85 k < K; ++k) EHETIT0C Dacunloselniehutt); S
for (int n = @; n < N; ++n) Levels R~ §
for (int m = 0; m < M; ++m) { Level3 IR IR —
float a = b[k]; +———————————————— |nit Level =3 IR
for (int d = 0; d < D; ++d) Level 2 BN "
for (int u = ©; u < U; ++u) Level1 g } 2
for (int v = 0; v < V; ++v) { Level 0 5 3
a += x[d][n+u][m+v] * w[k][d][u][V]; - i»*AGU2 = x; £
} B S
y[kI[n][m] = a; < Store Level =3 :
}
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Programming Model Tiling

= Cluster has limited memory (~128 kB)
= DNN data sets are usually multiple GB
= Tile input data into chunks that fit in 128 kB

= Use double buffering to hide latency while
NTX are processing current chunk
= Write back last iteration’s result
= Preload next iteration’s input data

= NTX run independently; processor free to
orchestrate data movement with the DMA

= Consider the tiled DNN convolution:

Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET

for (int tk = 0; tk < TK; ++tk) .
9; tn < TN; ++tn) [ Iterate over tiles of the

for (int tn )
input data

for (int tm = 0; tm < TM; ++tm) {

// load tile inputs x, w, b with DMA
for (int k = 0; k < K; ++k)
for (int n = ©; n < N; ++n)
for (int m = 0; m < M; ++m) {

float a = b[k]; - -

for (int d = ©; d < D; ++d)

for (int u = @; u < U; ++u)

for (int v = 0; v < V; ++v) {

a += x[d][n+u][m+v] * wlk]J[d][ul[V];
}

ylkI[n][m] = a;
}
// store tile outputs y

Luca Benini | 27 March2019 | 14
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C++ API Example

Tiled convolution: Tiled convolution with NTX:
for (int tk = Q; tk < TK; ++'tk) ntx_api ntx; Conﬁgure loop bounds
for (int tn = ©@; tn < TN; ++tn) dma_api dma; once for the entire
for (int tm = @; tm < TM; ++tm) { ntx.cfg loops(5, {N,M,D,U,V}, ...);| keme
load tile(x, w, b); for (int tk = 0; tk < TK; ++tk) o
for (int k = 0; k < K; ++k) for (int tn = @; tn < TN; ++tn) Start reading input data
For (int 1 Z8; n < N; Fan) T for (int tm = ©; tm < TM; M Point NTX at the
ifor (int m =

O; m < M; ++m) {

for (int d = 0; d < D; ++d)
for (int u = 0; u < U; ++u)
for (int v = 0; v < V; ++v) {
a += x[d][n+u][m+v] * wlk][d][u][Vv];

}

y[k]I[n][m] = a;

e

store_tile(y); }
}

Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET

} i ntx.wait ready();

dma.start_write (y)\ Start next computation
\ Wait for computation to complete

swap_buffers();

i dma.start_read(x, w, b); address of the input
float a = b[k]; i for (int k = 0; k < K; ++k) { ,//'dam
] ntx.cfg ptrs(x, &w[k], &y[k]);

Wait for the input data

P to be loaded (overlaps

with previous NTX
computation)

Start writing back output data

Luca Benini | 27 March2019 | 15



Execution Sample

= All 8 NTX perform the main computation
= DMA writes back results of last comput@tion and reads inputs for next

= Processor core orchestrates operation, gomputes addresses, pads input data
= NTXs require no control onge started
= DMA is capable of 2D transfars; core issuesymultiple small transfers for 3D/4D tensors

Core 58.2% utilization -

oy r
£ | DMA Write DMA Read 28.2% utilization
o \
< 8
NTXs
0
100% 1

median 84.4%

TX
Utilization

[9,]

(=]

R

0% -
100% 1

median 87.3%

TCDM
Efficiency
w
o
xR

0% r T T T T : . |
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time [us]
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Stencil Examples

= Stencils map very well to NTX's loops
= Process input/output in tiles; overlap data

movement and computation

CPU: ‘B Compute ‘ ‘c

Compute

= Example: Dense Stencil in 2D
= Similar to the convolution

= Multiply pixel’s neighbourhood with weights

= Example: Discrete Laplace Operator in 2D
= Stencil has a star shape, i.e. it's sparse
= Decompose into smaller, dense computations

= Perform computation in “passes”

Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET

Dense Stencil in 2D:

for (int tn = @; n < TN; ++tn)
for (int tm = ©; m < TM; ++tm) {
dma.load(x, w);
ntx.fmac(y, X, w);
dma.store(y);

}
Discrete Laplace Operator in 2D:

5x5 sparse weights

88888 2x5 dense weights
Q0000 09999

00000 decompose OOOOO
OO @O @—=n

non-zero
for (int tn = ©; tn < TN; ++tn)
for (int tm = 0; tm < TM; ++tm) {
dma.load(x, w);
ntx.fmac(y, x, w[@], axis=0);
ntx.fmac(y, x, w[l], axis=1);
dma.store(y);

} Luca Benini | 27 March 2019 | 17



Implementation in 22nm FD-SOI

Table 1
FIGURES OF MERIT OF ONE NTX CLUSTER IMPLEMENTED IN 22FDX.
= We have taped out NTX in Globalfoundries’ Processors: RISV Memory: 5458 TCDM
22FDX technology 8 NTX 218 ICACHE
. ) Frequency: 1.25 GHz NTX Area: 0.51 mmZ.
= Chips are back and being measured as we 625 MHz Cluster 59% density
Peak Perf.: 20 Gflop/s Power: 186 mW
speak 5GB/s Efficiency: 108 Gflop/s W

9.3 pJ /flop

= Paper presents post-layout estimates for a
single cluster

64 kB TCDM
in 32 banks
= NTXruns at up to 1.25 GHz 1
= Compute of 20 Gflop/s SHOHEmile e
= Bandwidth of 5 GB/s
= At 9.3 pJ/flop and using only 0.51 mm2 1x RISC-V
8x NTX processor and
COProcessors peripherals
= Scale up by replicating cluster ) B ICACHE

Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini | 27 March2019 | 18



Roofline

= NTX achieves high utilization of
available bandwidth and compute

= We investigate a range of different
kernels:

= Linear Algebra
= Mat-Mat product (GEMM)
= Mat-Vec product (GEMV)
= Vector sum (AXPY)
= Stencils
= Discrete Laplace Operator in 1D/2D/3D
= Diffusion
= Deep Learning

Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET

16

Performance [Gflop/s]

0.25

20 Gflop/s -

o XoTes T G
. o X G O/V [ Cg/b/;fo/w/ 5 O/I/I/ > Gﬂf/;f
g S, Sy o0 ks T 20,5
X G :Gq b4

; y y : :
w \ | |
r Very small problems harder to efficiently

I:I4*p)’
’°)’16 ¥ parallelize across 8 NTXs; overhead
T - shows as distance from rooflines. |
i I . i . i . |
0.25 4 16 64 256

Operational Intensity [flop/B]
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Single RV32IF Core:
lp.setupi LO, 1024, 5

Von Neumann Bottleneck

Setup

= NTX helps alleviate the von Neumann bottleneck

= No explicit load/store instructions Hot Loop

= No explicit address calculation instructions
=  Simple example: Dot product over 1024 elements Writeback
= With single RV32IF:

= 5122 instructions executed
= With single NTX (plus RV32l):

= 10 instructions executed

= 1024 idle cycles while NTX executes (can be used)
= NTX reduces instruction bandwidth by 512x Setup

= Even more when using more nested loops

= NTX amortizes single instruction stream over 8 FPUs
= Data/lnst. bandwidth ratio of 16 (worst case, usually higher)

Idle

Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET

flw
flw
fmad
addi
addi
fsw

d

fto, 0(a0)
ft1, 0(al)
ft2, fto, fti, ft2
ad, ao, 4
al, al, 4
ft2, 0(a2)

Single NTX:

a0,
al,
a2,
t1,
t1,
t1,
t1,
t1,
t1,
t1,

NTX_AGU@_PTR
NTX_AGU1_PTR
NTX_AGU2_PTR
1024
NTX_BOUND_L®
4
NTX_AGU@_S@
NTX_AGU1_Se
NTX_MAC_CMD
NTX_CMD
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Power Breakdown

= NTX dissipates significant fraction of power in R & o
. . ] & F®
its FPU (more is better): | s
= 31% of cluster | 9.4W
- 140/0 Of entlre HMC 321I‘?/ g"/zJ Lg"/3 of cluster
14"/: 1"/: 1"/2 of HMC

= Recall: GPU is around 4.8% [1]

= Compared to NVIDIA Volta GPU [2]:
= Register file in GPU holds registers and thread-

local data DS R2. [RO
= Each register read/write is an SRAM access DS R3. ERl}

= Register and data accesses compete for SRAM FFMA R4, R2, R3, R2

1 Volta SM 8 NTX cl. 2 mem. acc. ([...]")

Volta Assembly NTX Pseudocode

FMAC accu, [AGUO], [AGU1]

2 mem. acc. (“[...]")

64 FPUs 64 FPUs 8 reg. acc. 0 reg. acc.
(+ addr. calc for free)
256 kB RF 512 kB TCDM _ _ ~ _
128 kB LO Cache =10 SRAM hits total = 2 SRAM hits total
32'2048 threads 8 threads [1]1 S. Hong et al., “An integrated gpu power and performance model,” in ACM SIGARCH Computer Architecture News, 2010.

[2] Volta Architecture Whitepaper, NVIDIA
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Results Energy Efficiency

= How much Gflop/s of compute do we get per  °[ CPU | . ! _
W of power? ol N — T
= Comparison of NTX against GPU in similar =z NTXMnm_ ______ _ | | |
technology node 8 a0k e
20 | SN TRTSEE SRR
= 22 nm: 2.5x more vs. Nvidia TitanX 12 —
- 14 nm: 3.0x more Vs. NVldla TeSIa P100 K80 M40 TitanX P100 1080Ti NS NTX 32 NTX 64

= A note on Nvidia V100:
= Tensor cores operate on float16
= Real float32 efficiency likely 30 Gflop/Ws
= 12 nm NTX likely around 2x gain [1]

TITAN X

© NVIDIA

[1] O. Abdelkader et al, "The Impact of FinFET Technology Scaling on Critical Path Performance under Process Variations," at ICEAC, 2015.
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Results Deployed Silicon

= How much Gflop/s of compute do we get per

mm? of silicon area?

= Comparison of NTX against GPU in similar

technology node

= 22nm: 6.5x more vs. Nvidia K80
= 14nm: 10.4x more vs. Nvidia 1080Ti

= GPU dies are huge (>500 mm?)
= NTX fits easily into HMC

Gop/mm?3s

250

200

150

100

50

= Silicon in HMC manufactured anyway, but is

unused; virtually zero additional cost

Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET

' GPU mmmm
NS (Azarkhish)
DaDianNao
NTX 22nm I
NTX 14nm I

K80 M40 TitanX

P100 1080Ti

NS DDN NTX 32 NTX 64
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Results Data Center
Match power with different HMC configs

170 . ; . 260 @
= Match an Nvidia DGX-1 with HMCs [1] 160 - R R RISV NG BERRRERRRF 240 &
O 150 |- N b A N =
= Two Intel Xeon CPUs, eight Tesla P100 S ol S CCEETRP VSR N L 220 >
N T 1 M NN TR - 200 3
= 3.2 kW total, 2.4 kW due to GPU 2 138 ——————————— —————————— EER NG """""" 180 &
= 84.8 Tflop/s of compute E o N ey
=z : Number of HMCs ; L 140 2
:8 """"" | o Complute Capabilit¥ —— T T 120 g

= Scenario 1: Match 3.2 kW power envelope e e NNT;XC?‘:E SNTX o eme TR

usters per HMC
= 3.1x increase in compute (258.9 Tflop/s
P ( pls) Match compute with different HMC configs

= 129 HMCs, 128 NTX clusters each 110, : : 1700

100 NG N ., 1600
T R SERTRE N S 1500 ¥
= Scenario 2: Match 84.8 Tflop/s of compute z jg [ N Numberof HMCs —— - 1300 g
; 3 : : Saved Power —>¢— a
= 2.1x power reduction (1.53 kW) £ 60 N SRR R E 1?88 3
= 43 HMCs, 128 NTX clusters each z IDZZ00N N B S R [Seoedi

" Energy bl” _$1808 per server and year ?\IQI'X 16 NT); 32 NT)I( 64 NTXI128 NTXI256 NTX SZIE.;;)O

NTX Clusters per HMC
[1] F. Schuiki et al, "Schuiki, Fabian, et al. "A scalable near-memory architecture for training deep neural networks on large in-memory datasets," in IEEE Transactions on Computers, 2019.
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Results Scaling to Multiple HMCs

= Arrange HMCs in a mesh
= Communication with neighbors via serial links

=  We investigate the scaling behaviour of DNN §
training over multiple HMCs &
= For example 64 HMCs and batch sizes 8192:
= HMCs provide almost ideal speedup:
= 62.8x speedup R
= 98% parallel efficiency §
E
= HMCs lose little energy to communication: — &

= 94.3% energy efficiency

250

200

150

100

50

[BS=32768
[~ BS=2048

- BS=128 —— S — R s

----------- | e S D

BS=8192 ——

BS=512

BS=32 ——

50 100 150 200 250
Number of HMCs

100 150 200 250
Number of HMCs

[1]1 F. Schuiki et al, "Schuiki, Fabian, et al. "A scalable near-memory architecture for training deep neural networks on large in-memory datasets," in IEEE Transactions on Computers, 2019.
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Future Work

= Address Generator Extension
= NTX’s address generator likely applicable to more kernels
* FFTs, linear algebra decompositions/factorizations

= Searches? Sorting? Graphs? @PRECOMP

Open Transprecision Computing
.. . 5 exponent martissa
= Transprecision Computing O T T EEE binarya2
. . 1L 8 L 23 1
= Save precious DRAM bandwidth s _
- same dynamic range as binary32 .
= Custom number formats m@.]'”“" o preciion nen snayse. CUSIOM bInaryTGat
= Use float8, float16 CODDDDTTTTTTTTIT] o5 e e o2 e pinary1s
= Logarithmic numbers? Pt —
. . - game dynamic range as binary16
= On-the-fly data type conversion in DMA EE;Q -l precision than birary16 custom binary8

=  Automated Mapping of Kernels
= Starting from Compute Graph, e.g. TensorFlow
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