
||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 1

Fabian Schuiki1, Michael Schaffner1, Luca Benini1,2

ETH Zurich1 and University of Bologna2

NTX: An Energy-efficient Streaming Accelerator for Floating-
point Generalized Reduction Workloads in 22nm FD-SOI

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 2

Machine Learning @ Cloud

2
[Xu et all. Nature Electronics Apr 18]

Exponential Complexity growth!

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 3

ML: HW reinassance!

3

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 4

DNN training as a workload

 Inference
 Well covered
 Compute layer, only keep results, advance

 Training
 Long data dependency chain
 Intermediate results must be stored
 Cannot fuse ReLU with convolution
 Derivatives tricky (ReLU, Maxpool)

 Offloading
 Convolution needs 6 loops
 Accelerator must have high autonomy
 Processor cores orchestrate training + higher precision & dynamic range requirements!

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 5

Downside of GPUs for Training

 GPUs are the workhorse of data center DNN training
 They generally have a TDP of 200-300 W
 Peak compute reaches 15 Tflop/s these days

 Only 4.9% of that power estimated to be spent in the FPUs [1]:
 [1] reports 2.9%, but their kernels don’t reach TDP/max perf.
 In dubio pro Invidia: We scale power to assume modern GPUs can

reach TDP at max perf. (making them more efficient).

 In practice GPU efficiency hard to estimate:
 GPUs may not be able to reach max compute before hitting TDP

[1] S. Hong and H. Kim, “An integrated gpu power and performance model,” in ACM SIGARCH Computer Architecture News, 2010.

Graph extracted and cropped from [1].

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 6

Network Training Accelerator (NTX)

[1] Schuiki et al, “A Scalable Near-Memory Architecture for Training Deep Neural Networks on Large In-Memory Datasets,”, in IEEE TC 2019.
[2] Azarkhish et al, "Neurostream: Scalable and energy efficient deep learning with smart memory cubes,” in IEEE TPDS 2018.

 We propose NTX [1]
 Streaming floating-point co-processor
 Efficiently performs float32 FMAC
 Fast multiply-accumulate, single cycle

 Address generation unit ensures low control overhead
 5 nested hardware loops
 3 address generators

 Many common C/C++ loop nests map well to this architecture
 8 NTX paired up per associated processor core
 Floating-point operation makes accelerator a drop-in

replacement for GPUs for training.
 Based on lessons learned from Neurostream [2]

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 7

 Main data path is a single-cycle partial
carry save FMA

 Expansion of float operands to fixed-point
 Multiplication and addition in fixed-point
 Single-cycle
 Tuneable performance by increasing number of

partial sums
 Conversion to float after accumulation
 Partial sums are accumulated
 Conversion from fixed-point to float

 Heavily pipelined

Architecture FMAC

a

b
c

z

32 bit float

≈300 bit fixed-point
32 bit float

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 8

 FMA operands arrive as memory streams
 Maskable to 0/1 to disable add/mul

 Optional ReLU on FMA result
 Comparator for finding max/min
 Index counter for finding argmax/argmin
 Enables maxpool derivatives

 Output can be masked to 0/1
 Enables ReLU derivatives

 Fire-and-forget datapath
 Command pushed into FIFO
 Consumes fixed number of input items
 Produces fixed number of output items

Architecture Data Path

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 9

Architecture Address Generation

Used as read addresses Used as write address 5 nested hardware loop counters
 16 bit counter register
 Configurable number of iterations
 Once last iteration reached:
 Reset counter to 0
 Enable next counter for one cycle

 3 address generation units
 32 bit address register
 Each has 5 configurable strides, one per loop
 One stride added to register per cycle
 Stride corresponds to the highest enabled loop

 Allows for complex address patterns

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 10

Architecture Coprocessor
 Processor configures operation via memory-mapped registers
 Controller issues AGU, HWL, and FPU micro-commands based on configuration
 Reads/writes data via 2 memory ports (2 operand and 1 writeback streams)
 FIFOs help buffer data path and memory latencies

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 11

Architecture Processing Cluster
 1 processor core controls 8 NTX coprocessors
 Attached to 128 kB shared TCDM via a logarithmic interconnect
 DMA engine used to transfer data (double buffering)
 Multiple clusters connected via interconnect (crossbar/NoC)

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 12

Architecture HMC Integration
 HMC is split into independent vaults (DRAM controllers)
 Main interconnect routes traffic between serial links and vaults
 Clusters attach to this interconnect
 Full view of the HMC memory space
 Access to other HMCs via serial links

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 13

N
TXLevel 0

Level 1
Level 2

Level 3
Level 4

 Up to 5 nested loops can be offloaded to NTX
 Loops should describe a reduction for best performance
 Covers convolutions, fully connected layers, and more

 Accumulator initialization and writeback is configurable
 For example a DNN convolution:

Programming Model Loops

for (int k = 0; k < K; ++k)
for (int n = 0; n < N; ++n)
for (int m = 0; m < M; ++m) {

float a = b[k];
for (int d = 0; d < D; ++d)
for (int u = 0; u < U; ++u)
for (int v = 0; v < V; ++v) {

a += x[d][n+u][m+v] * w[k][d][u][v];
}
y[k][n][m] = a;

}
Store Level = 3

Init Level = 3

Perform outermost loop
level on processor core.

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 14

 Cluster has limited memory (~128 kB)
 DNN data sets are usually multiple GB
 Tile input data into chunks that fit in 128 kB
 Use double buffering to hide latency while

NTX are processing current chunk
 Write back last iteration’s result
 Preload next iteration’s input data

 NTX run independently; processor free to
orchestrate data movement with the DMA

 Consider the tiled DNN convolution:

Programming Model Tiling

for (int tk = 0; tk < TK; ++tk)
for (int tn = 0; tn < TN; ++tn)
for (int tm = 0; tm < TM; ++tm) {
// load tile inputs x, w, b with DMA
for (int k = 0; k < K; ++k)
for (int n = 0; n < N; ++n)
for (int m = 0; m < M; ++m) {
float a = b[k];
for (int d = 0; d < D; ++d)
for (int u = 0; u < U; ++u)
for (int v = 0; v < V; ++v) {
a += x[d][n+u][m+v] * w[k][d][u][v];

}
y[k][n][m] = a;

}
// store tile outputs y

}

Iterate over tiles of the
input data

Iterate over pixels in
the current tile

Perform
convolution
for current
pixel

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 15

C++ API Example

for (int tk = 0; tk < TK; ++tk)
for (int tn = 0; tn < TN; ++tn)
for (int tm = 0; tm < TM; ++tm) {
load_tile(x, w, b);
for (int k = 0; k < K; ++k)
for (int n = 0; n < N; ++n)
for (int m = 0; m < M; ++m) {
float a = b[k];
for (int d = 0; d < D; ++d)
for (int u = 0; u < U; ++u)
for (int v = 0; v < V; ++v) {
a += x[d][n+u][m+v] * w[k][d][u][v];

}
y[k][n][m] = a;

}
store_tile(y);

}

Tiled convolution:

ntx_api ntx;
dma_api dma;
ntx.cfg_loops(5, {N,M,D,U,V}, ...);
for (int tk = 0; tk < TK; ++tk)
for (int tn = 0; tn < TN; ++tn)
for (int tm = 0; tm < TM; ++tm) {
dma.start_read(x, w, b);
for (int k = 0; k < K; ++k) {
ntx.cfg_ptrs(x, &w[k], &y[k]);
dma.wait_read();
ntx.issue_cmd(ntx_api::MAC);

}
ntx.wait_ready();
dma.start_write(y);
swap_buffers();

}

Tiled convolution with NTX:

Configure loop bounds
once for the entire
kernel

Start reading input data

Point NTX at the
address of the input
data

Wait for the input data
to be loaded (overlaps
with previous NTX
computation)

Start next computation

Wait for computation to complete

Start writing back output data

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 16

Execution Sample
 All 8 NTX perform the main computation
 DMA writes back results of last computation and reads inputs for next
 Processor core orchestrates operation, computes addresses, pads input data
 NTXs require no control once started
 DMA is capable of 2D transfers; core issues multiple small transfers for 3D/4D tensors

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 17

Stencil Examples
 Stencils map very well to NTX’s loops
 Process input/output in tiles; overlap data

movement and computation

 Example: Dense Stencil in 2D
 Similar to the convolution
 Multiply pixel’s neighbourhood with weights

 Example: Discrete Laplace Operator in 2D
 Stencil has a star shape, i.e. it’s sparse
 Decompose into smaller, dense computations
 Perform computation in “passes”

for (int tn = 0; n < TN; ++tn)
for (int tm = 0; m < TM; ++tm) {

dma.load(x, w);
ntx.fmac(y, x, w);
dma.store(y);

}

Dense Stencil in 2D:

for (int tn = 0; tn < TN; ++tn)
for (int tm = 0; tm < TM; ++tm) {

dma.load(x, w);
ntx.fmac(y, x, w[0], axis=0);
ntx.fmac(y, x, w[1], axis=1);
dma.store(y);

}

Discrete Laplace Operator in 2D:

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 18

 We have taped out NTX in Globalfoundries’
22FDX technology

 Chips are back and being measured as we
speak

 Paper presents post-layout estimates for a
single cluster

 NTX runs at up to 1.25 GHz
 Compute of 20 Gflop/s
 Bandwidth of 5 GB/s
 At 9.3 pJ/flop and using only 0.51 mm2

 Scale up by replicating cluster

Implementation in 22nm FD-SOI

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 19

Roofline

 NTX achieves high utilization of
available bandwidth and compute

 We investigate a range of different
kernels:

 Linear Algebra
 Mat-Mat product (GEMM)
 Mat-Vec product (GEMV)
 Vector sum (AXPY)

 Stencils
 Discrete Laplace Operator in 1D/2D/3D
 Diffusion

 Deep Learning

Very small problems harder to efficiently
parallelize across 8 NTXs; overhead
shows as distance from rooflines.

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 20

Von Neumann Bottleneck

 NTX helps alleviate the von Neumann bottleneck
 No explicit load/store instructions
 No explicit address calculation instructions

 Simple example: Dot product over 1024 elements
 With single RV32IF:
 5122 instructions executed

 With single NTX (plus RV32I):
 10 instructions executed
 1024 idle cycles while NTX executes (can be used)

 NTX reduces instruction bandwidth by 512x
 Even more when using more nested loops

 NTX amortizes single instruction stream over 8 FPUs
 Data/Inst. bandwidth ratio of 16 (worst case, usually higher)

lp.setupi L0, 1024, 5
flw ft0, 0(a0)
flw ft1, 0(a1)
fmadd ft2, ft0, ft1, ft2
addi a0, a0, 4
addi a1, a1, 4
fsw ft2, 0(a2)

Single RV32IF Core:

Setup

Writeback

Hot Loop

Setup

Idle

sw a0, NTX_AGU0_PTR
sw a1, NTX_AGU1_PTR
sw a2, NTX_AGU2_PTR
li t1, 1024
sw t1, NTX_BOUND_L0
li t1, 4
sw t1, NTX_AGU0_S0
sw t1, NTX_AGU1_S0
li t1, NTX_MAC_CMD
sw t1, NTX_CMD
wfi

Single NTX:

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 21

Power Breakdown

 NTX dissipates significant fraction of power in
its FPU (more is better):
 31% of cluster
 14% of entire HMC
 Recall: GPU is around 4.8% [1]

 Compared to NVIDIA Volta GPU [2]:
 Register file in GPU holds registers and thread-

local data
 Each register read/write is an SRAM access
 Register and data accesses compete for SRAM

[1] S. Hong et al., “An integrated gpu power and performance model,” in ACM SIGARCH Computer Architecture News, 2010.
[2] Volta Architecture Whitepaper, NVIDIA

FMAC accu, [AGU0], [AGU1]
LDS R2, [R0]
LDS R3, [R1]
FFMA R4, R2, R3, R2

Volta Assembly NTX Pseudocode

2 mem. acc. (“[…]”)
8 reg. acc.

2 mem. acc. (“[…]”)
0 reg. acc.
(+ addr. calc for free)

= 10 SRAM hits total = 2 SRAM hits total

1 Volta SM 8 NTX cl.
64 FPUs 64 FPUs
256 kB RF
128 kB L0 Cache

512 kB TCDM

32-2048 threads 8 threads

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 22

 How much Gflop/s of compute do we get per
W of power?

 Comparison of NTX against GPU in similar
technology node

 22 nm: 2.5x more vs. Nvidia TitanX
 14 nm: 3.0x more vs. Nvidia Tesla P100

 A note on Nvidia V100:
 Tensor cores operate on float16
 Real float32 efficiency likely 30 Gflop/Ws
 12 nm NTX likely around 2x gain [1]

Results Energy Efficiency

© NVIDIA

[1] O. Abdelkader et al, "The Impact of FinFET Technology Scaling on Critical Path Performance under Process Variations," at ICEAC, 2015.

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 23

 How much Gflop/s of compute do we get per
mm2 of silicon area?

 Comparison of NTX against GPU in similar
technology node

 22nm: 6.5x more vs. Nvidia K80
 14nm: 10.4x more vs. Nvidia 1080Ti

 GPU dies are huge (>500 mm2)
 NTX fits easily into HMC
 Silicon in HMC manufactured anyway, but is

unused; virtually zero additional cost

Results Deployed Silicon

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 24

Results Data Center

 Match an Nvidia DGX-1 with HMCs [1]
 Two Intel Xeon CPUs, eight Tesla P100
 3.2 kW total, 2.4 kW due to GPU
 84.8 Tflop/s of compute

 Scenario 1: Match 3.2 kW power envelope
 3.1x increase in compute (258.9 Tflop/s)
 129 HMCs, 128 NTX clusters each

 Scenario 2: Match 84.8 Tflop/s of compute
 2.1x power reduction (1.53 kW)
 43 HMCs, 128 NTX clusters each
 Energy bill: –$1808 per server and year

Match power with different HMC configs

Match compute with different HMC configs

[1] F. Schuiki et al, "Schuiki, Fabian, et al. "A scalable near-memory architecture for training deep neural networks on large in-memory datasets," in IEEE Transactions on Computers, 2019.

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 25

Results Scaling to Multiple HMCs

 Arrange HMCs in a mesh
 Communication with neighbors via serial links
 We investigate the scaling behaviour of DNN

training over multiple HMCs
 For example 64 HMCs and batch sizes 8192:

 HMCs provide almost ideal speedup:
 62.8x speedup
 98% parallel efficiency

 HMCs lose little energy to communication:
 94.3% energy efficiency

[1] F. Schuiki et al, "Schuiki, Fabian, et al. "A scalable near-memory architecture for training deep neural networks on large in-memory datasets," in IEEE Transactions on Computers, 2019.

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 26

 Address Generator Extension
 NTX’s address generator likely applicable to more kernels
 FFTs, linear algebra decompositions/factorizations
 Searches? Sorting? Graphs?

 Transprecision Computing
 Save precious DRAM bandwidth
 Custom number formats
 Use float8, float16
 Logarithmic numbers?

 On-the-fly data type conversion in DMA

 Automated Mapping of Kernels
 Starting from Compute Graph, e.g. TensorFlow

Future Work

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 27

