
AUTOMATIC CODE RESTRUCTURING FOR FPGAS:
CURRENT STATUS, TRENDS AND OPEN ISSUES

DATE 2019 | DATE - Design, Automation and Test in Europe, Firenze, Italy, March 27, 2019

Special Day on “Embedded Meets Hyperscale and HPC”

João MP Cardoso
jmpc@acm.org

Compiling to hardware: Timeline

80’s 90’s 00’s 10’s 20’

...

2

Compiling to FPGAs (hardware)

• Of paramount importance for allowing software developers
to map computations to FPGA-based accelerators
• Efficient compilation will improve designer productivity and will

make the use of FPGA technology viable for software
programmers

• Challenge:
• Added complexity of the extensive set of execution models

supported by FPGAs makes efficient compilation (and
programming) very hard

• Years of research on High-Level Synthesis (mostly on
hardware generation from C) and adoption of mature
compiler frameworks are resulting in the effective use of HLS

3

Outline

• Intro

• Why source to source compilers?

• Code restructuring

• Some approaches for code restructuring

• Our ongoing work

• Conclusion

• Future work

4

Why source to source compilers?

• There are many optimizations and code transformations
that can be explored at the source code level

• Target code is still legible

• Not tied to a specific target compiler (tool flow) or
target Architecture!

5

But:
• Not all optimizations can be done at source code level!
• Some code transformations are too specific and without enough

application potential to justify inclusion in a compiler (unless the
code is too important and must be regularly
used/modified/extended)

Source level code transf.: 3D Path Planner

• Target: ML507 Xilinx Virtex-5 board,
PowerPC@400 MHz, CCUs@100 MHz

Optimization
Strategy

1 2 3 4 5 6 7 8
Loop fission and move       

Replicate array 3×    

Map gridit to HW core        

Pointer-based accesses and strength
reduction

     

Unroll 2×        

Eliminating array accesses        

Move data access 

Specialization→ 3 HW cores  

Transfer pot data according to gridit call    

Transfer obstacles data according to gridit
call

     

On-demand obstacles data transfer      FPGA resources
Implementation

1 2,3,4 5,6 7,8
Slice Registers as FF 901 939 956 2,470
Slice LUTs 1,182 1,284 1,308 2,148
occupied Slices 531 663 642 1,004
BlockRAM/# DSP48Es 34/6 34/6 98/6 98/12

1.94

5.01

5.61

5.94

6.08

6.68

6.72

6.80

1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3 5.8 6.3 6.8 7.3

1

2

3

4

5

6

7

8

Im
p

le
m

e
n

ta
ti

o
n

Strategy 8: 6.8  faster than
pure software solution

Source: EU-Funded FP7 REFLECT project 6

S
e
e
: C

a
rd

o
so

 e
t a

l., S
p

e
c
ify

in
g

 C
o

m
p

ile
r

S
tra

te
g

ie
s fo

r F
P

G
A

-b
a
se

d

S
y
ste

m
s.

F
C

C
M

2
0
1
2

http://dblp.uni-trier.de/db/conf/fccm/fccm2012.html#CardosoTANDCL12

Simple code restructuring
example
An FIR

7

Code restructuring: FIR example

// x is an input array
// y is an output array
#define c0 2, c1 4, c2 4, c3 2
#define M 256 // no. of samples
#define N 4 // no. of coeff.
int c[N] = {c0, c1, c2, c3};
...
// Loop 1:
for(int j=N-1; j<M; j++) {

output=0;
// Loop 2:
for(int i=0; i<N; i++) {

output+=c[i]*x[j-i];
}
y[j] = output;

}
8

Code restructuring: FIR example

// Loop 1
for(int j=3; j<M; j++) {

x_3=x[j];
x_2=x[j-1];
x_1=x[j-2];
x_0=x[j-3];
output=c0*x_3;
output+=c1*x_2;
output+=c2*x_1;
output+=c3*x_0;
y[j] = output;

}

II=2

1 sample per 2 clock cycles

// x is an input array
// y is an output array
#define c0 2, c1 4, c2 4, c3 2
#define M 256 // no. of samples
#define N 4 // no. of coeff.
int c[N] = {c0, c1, c2, c3};
...
// Loop 1:
for(int j=N-1; j<M; j++) {

output=0;
// Loop 2:
for(int i=0; i<N; i++) {

output+=c[i]*x[j-i];
}
y[j] = output;

}
9

Code restructuring: FIR example

// Loop 1
for(int j=3; j<M; j++) {

x_3=x[j];
x_2=x[j-1];
x_1=x[j-2];
x_0=x[j-3];
output=c0*x_3;
output+=c1*x_2;
output+=c2*x_1;
output+=c3*x_0;
y[j] = output;

}

II=2

x_0=x[0];
x_1=x[1];
x_2=x[2];
// Loop 1
for(int j=3; j<M; j++) {

x_3=x[j];
output=c0*x_3;
output+=c1*x_2;
output+=c2*x_1;
output+=c3*x_0;
x_0=x_1;
x_1=x_2;
x_2=x_3;
y[j] = output;

}

II=1

1 sample per 2 clock cycles 1 sample per clock cycle

// x is an input array
// y is an output array
#define c0 2, c1 4, c2 4, c3 2
#define M 256 // no. of samples
#define N 4 // no. of coeff.
int c[N] = {c0, c1, c2, c3};
...
// Loop 1:
for(int j=N-1; j<M; j++) {

output=0;
// Loop 2:
for(int i=0; i<N; i++) {

output+=c[i]*x[j-i];
}
y[j] = output;

}
10

Code restructuring:
FIR example

// Loop 1
for(int j=3; j<M; j++) {

x_3=x[j];
x_2=x[j-1];
x_1=x[j-2];
x_0=x[j-3];
output=c0*x_3;
output+=c1*x_2;
output+=c2*x_1;
output+=c3*x_0;
y[j] = output;

}

II=2

x_0=x[0];
x_1=x[1];
x_2=x[2];
// Loop 1
for(int j=3; j<M; j++) {

x_3=x[j];
output=c0*x_3;
output+=c1*x_2;
output+=c2*x_1;
output+=c3*x_0;
x_0=x_1;
x_1=x_2;
x_2=x_3;
y[j] = output;

}

II=1

// Loop 1
for(int j=3; j<M; j+=2) {

x_3=x[j];
output=c0*x_3;
output+=c1*x_2;
output+=c2*x_1;
output+=c3*x_0;
x_0=x_1;
x_1=x_2;
x_2=x_3;
y[j] = output;
x_3=x[j+1];
output=c0*x_3;
output+=c1*x_2;
output+=c2*x_1;
output+=c3*x_0;
x_0=x_1;
x_1=x_2;
x_2=x_3;
y[j+1] = output;

}

II=1

1 sample per 2 clock cycles 1 sample per clock cycle 2 samples per clock cycle 11

S
e
e
: Jo

ã
o

 M
. P. C

a
rd

o
so

,
M

a
rk

u
s W

e
in

h
a
rd

t, H
ig

h
-L

e
v
e
l

S
y
n

th
e
sis.

F
P

G
A

s
fo

r S
o

ftw
a
re

 P
ro

g
ra

m
m

e
rs

2
0
1
6
.

http://dblp.uni-trier.de/db/books/collections/KHZ2016.html#CardosoW16

Code restructuring

• Manual
• Programmers need to know the impact of code styles and

structures on the generated architecture – with similarities to the
HDL developers, although in a different level

• Fully automatic with a source-to-source compiler
(refactoring tool)
• Need to devise the code transformations to apply and their

ordering
• Need source to source compilers integrating a vast portfolio of

code transformations

• Semi-automatic with a source-to-source compiler
(refactoring tool)
• Code transformations automatically applied but guided by users
• Users can define their own code transformations

12

Some approaches for code restructuring/opt.

• Flag selection

• Phase ordering

• Polyhedral models

• Graph-based
transformations

13

- LegUp [Canis et al., ACM TECS’13]: flag selection and phase
ordering (via LLVM + opt) [Huang et al., ACM TRETS’15]

- The Merlin Compiler and source to source optimizations by Cong
et.al., FSP’16

- Polyhedral transformations by Zuo et al., FPGA’13
- Polyhedral in nested loop pipelining by Morvan et al., IEEE

TCAD’13
- Graph-based code restructuring by Ferreira and Cardoso, FSP’18,

ARC’19

Flag selection

• Generation controlled by enabling/disabling
compiler flags – sequence of optimizations are
the ones built-in and pre-fixed for each flag

• Suitable to most common approaches, but
without taking full-advantage of
customization/specialization

Helping but without solving the code
restructuring problem!

14

Phase ordering

• Providing specific sequences of compiler optimizations

• Problem is very complex as besides selecting the phases one needs to
provide sequences – usually repeating phases

• Difficult to find the sequence!

• Fully dependent on the portfolio of phases a compiler may include –
phases need to justify their inclusion (i.e., if they pay-off)

Limitations for solving the code restructuring
problem!

15

Polyhedral models

• Applied to Static Control Parts – require specific loop
structures, statically known iteration spaces, limited to
affine domains

• Pure polyhedral models transform iteration spaces –
more advanced approaches combine the polyhedral
model with AST transformations

• Able to provide useful code transformations and justify
their inclusion in the portfolio of compiler
optimizations

Helping on solving the code restructuring
problem!

16

This Photo by Unknown Author is licensed under
CC BY-NC

https://www.laetusinpraesens.org/musings/flowgall.php
https://creativecommons.org/licenses/by-nc/3.0/

Graph-based transformations (our ongoing
work)
• Traces of computations are represented in

Dataflow Graphs (DFGs)

• Code restructuring problem is solved by graph
transformations

• Able to achieve high-levels of code restructuring
and suitable HLS directives

A proof of concept… scalability still needs to
be solved!

17

This Photo by Unknown Author is licensed under
CC BY-SA

https://en.wikipedia.org/wiki/Moebius-Kantor_Graph
https://creativecommons.org/licenses/by-sa/3.0/

Code restructuring: ongoing

18

Application
Code

(Software
Programming

Language)

Graphs
(e.g.,

Representing
Traces)

Analysis,
Profiling,
Execution

Graph-based
Optimizations

Code
Generation

StrategiesInput Strategies

Code restructuring: graph-based approach

19

Application
Code

(Software
Programming

Language)

DFG
(Representi
ng a Trace)

Analysis,
Profiling,
Execution

Graph-based
Optimizations

Code
Generation

Configurations

+ directives

Optimize DFG
Split in subDFGs

Fold DFGs
Identify data reuse

Balance chains of operations
Data partitioning

void filter_subband (double z[Nz], double

s[Ns], double m[Nm]){

double y[Ny];

int i,j;

for (i=0;i<Ny;i++)

{

y[i] = 0.0;

for (j=0; j<(int)Nz/Ny;j++)

y[i] += z[i+Ny*j];

}

for (i=0;i<Ns;i++)

{

s[i]=0.0;

for (j=0; j<Ny;j++)

s[i] += m[Ns*i+j] * y[j];

}

}

20

Example – filter subband

20Source: Ferreira and Cardoso, ARC’2019

DFG
(Representi
ng a Trace)

Graph-based
Optimizations

Code
Generation

Configurations

void result(double s[32], double z[512], double m[1024]){

#pragma HLS array_partition variable=s cyclic factor=16

#pragma HLS array_partition variable=z cyclic factor=16

#pragma HLS array_partition variable=m cyclic factor=64

s[0]=0;

…

s[31]=0;

for(int i =0; i < 64; i=i+4){

#pragma HLS pipeline

partial_1_2 = z[i+320] + z[i+256];

…

y0 = final_partial_1;

y0_a10 = final_partial_2;

for(int j =0; j < 32; j=j+1){

temp_1=m[(32)*j+i] * y0;

temp_2=m[(32)*j+i+1] * y0_a10;

…

partial_in_1 = temp_1 + temp_2;

partial_in_2 = temp_3 + temp_4;

final_part_in = partial_in_1+ partial_in_2;

s[j]=s[j] + final_part_in;

}

}

}

Name Speedup
C

Speedup
C-inter

Speedup
C-high

Latency
(#ccs)

Clock
Period (ns)

#LUT #FF #DSP #BRAM

Filter subband 81 5.8 5.8 293 (0.18) 17.1 (0.9) 47537 (7.1) 42589 (3.6) 118 (4.1) 0

Dotprod 16 5.6 1.0 255 (1) 8.9 (1.0) 294 (1.0) 581 (1.0) 8 (1.0) 0

Autocorrelation 297 98.6 47.5 16 (0.018) 8.6 (1.1) 8025 (4.0) 7114 (7.9) 160 (16.0) 0

1D FIR 237 30.0 16.2 120 (0.06) 8.7 (1) 4297 (0.9) 5641 (1.9) 192 (1.6) 0

2D Convolution 76 5.0 3.0 3886 (0.33) 8.7 (1) 6376 (1.2) 3408 (0.6) 57 (1.5) 0

SVM 123 3.5 3.5 3208 (0.28) 8.4 (1) 14203 (1.6) 12506 (1.6) 91 (1.6) 76 (1.11)18

Experimental results

• Vivado HLS 2017.4
• Xilinx FPGA Artix-7

(xc7z020clg484-1)

21

Input Description

C Original code without modifications

C-inter Input code optimized with basic directives such as pipelining

C-high Improve C-inter with array partitioning and loop unrolling directives

Source: Ferreira and Cardoso, ARC’2019

Ongoing and future work

• Comparisons to the approaches using the polyhedral model to
restructure software code

• Scalability issues

• How to avoid the need of explicit large graphs when dealing with large traces /
loops with many iterations?

• Focus on optimizations regarding conditional paths

• Use of different execution paths to create specialized accelerators and
schemes to manage their execution at runtime

• Merge of execution paths in order to avoid one specialized accelerator per
execution path

22Source: Ferreira and Cardoso, ARC’2019

Conclusion

• Source-to-source compilers as front-ends and HLS tools as the new
backends for advanced compilation to FPGAs

• Compiling to FPGAs needs more efficient and aggressive code
restructuring – a research challenge!

• Our recent efforts focus on an approach to optimize code for HLS
based on unfolded graph representations and graph transformations
– experimental results highlight the benefits of the approach

• A deeper study about code restructuring approaches needs to be
done!

23

Thank you! Questions?
João MP Cardoso

jmpc@acm.org

Acknowledgments

CONTEXTWA

SMILES

PhD schoolarships from FCT

Afonso Ferreia
João Bispo
Pedro Pinto
Tiago Carvalho
Luís Reis

