MARCH 25—29, 2018
FLORENCE, ITALY

FIRENZE FIERA

DESIGN, AUTOMATION AND TEST IN
EUROPE THE EUROPEAN EVENT FOR
ELECTRONIC SYSTEM DESIGN & TEST

AUTOMATIC CODE RESTRUCTURING FOR FPGAS
CURRENT STATUS, TRENDS AND OPEN ISSUES

Special Day on “Embedded Meets Hyperscale and HPC”

Joao MP Cardoso
jmpc@acm.org

[BAPORTO OJH INESCT

FEUP FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

W SPeCS

Special-Purpose Computing
Systems, languages and tools

IO SS CI O

DATE 2019 | DATE - Design, Automation and Test in Europe, Firenze, Italy, March 27, 2019

Compiling to hardware: Timelir’\e

w i back!

—

PROGRAMMING
LANGUAGE

SYSTE{\/\ C

PROGRAMMING
LANGUAGE

N

EMBEDDED <=
SOLUTIONS <2+> OpenSPL

=
THE “EE

&

H J;%il

THE

PROGRAMMING
LANGUAGE (_ ODEI'ICL

‘F
Rrian W. Kernighan » Dennis AL Ritdj PROGRAMMINC
h— | Handel-C LANGUAGE
e
Java Brian W, Kernighan = Dennis M, R -

80’s 90’s

Q

A

> >~
3 2J

20’

Compiling to FPGAs (hardware) =

* Of paramount importance for allowing software developers =
to map computations to FPGA-based accelerators =——
 Efficient compilation will improve designer productivity and will

make the use of FPGA technology viable for software
programmers

* Challenge:

 Added complexity of the extensive set of execution models
supported by FPGAs makes efficient compilation (and
programming) very hard

* Years of research on High-Level Synthesis (mostly on
hardware generation from C) and adoption of mature G4
compiler frameworks are resulting in the effective use of HLS

Outline

* [ntro

* Why source to source compilers?

* Code restructuring

* Some approaches for code restructuring
e Our ongoing work

* Conclusion

e Future work

Why source to source compilers? —

* There are many optimizations and code transformations |——_
that can be explored at the source code level =%

* Target code is still legible

* Not tied to a specific target compiler (tool flow) or
target Architecture!

But:

* Not all optimizations can be done at source code level!

* Some code transformations are too specific and without enough 7
application potential to justify inclusion in a compiler (unless the

code is too important and must be regularly
used/modified/extended)

* Target: ML507 Xilinx Virtex-5 board,

PowerPC@400 MHz, CCUs@100 MHz

APU interface

PowerPC
(PPC440)

Hardware Modules

Local Memories

CCU-1 CCU-2

CCU-

N

A

A

Y

External Memories

Strategy 8: 6.8 x faster than
pure software solution

16.72

16,68

38 43 48

53

5.8

6.3

6.8

73

Source: EU-Funded FP7 REFLECT project 6

e Strategy LB
Optimization 1 2 3 4 & 6 - 3
Loop fission and move v v v v v v v
Replicate array 3x v v v v
Map gridit to HW core v v v v v v v v
Pointer-based accesses and strength v o v v v v Vv
reduction
Unroll 2x A A A A S ————
Eliminating array accesses v v v v v v v v j S I
Move data access v . 1 1 1
Specialization — 3 HW cores v v e
Transfer pot data according to gridit call v v o ov v 1] I
Transfer obstacles data according to gridit v o v v v v v :
call — — 2] | []
- mplementation ' -
On-demand « FPGA resources 1 234 56 78 — 1 194
Slice Registers as FF 901 939 956 2,470 18 23 28 33
Slice LUTs 1,182 1,284 1,308 2,148
occupied Slices 531 663 642 1,004
BlockRAM/# DSP48Es 34/6 34/6 98/6 98/12

J sa1bajes)s
“|e 1@ osopJe)) 995

(%2
<
1]
(g
("]
3
n
-
0
0O
<
N
2
N

paseq-yDd4 40

19j1dwo) buihynadsg

http://dblp.uni-trier.de/db/conf/fccm/fccm2012.html#CardosoTANDCL12

Simple code restructuring
example

Code restructuring: FIR example

// X is an input array

// y is an output array
#definec02,c14,c24,c32
#tdefine M 256 // no. of samples
#define N 4 // no. of coeff.

int c[N] ={c0, c1, c2, c3};

// Loop 1:

for(int j=N-1; j<M; j++) {
output=0;
// Loop 2:
for(int i=0; i<N; i++) {

output+=c[i]*x[j-i];

}
ylJ] = output;

Code restructuring: FIR example

// xis an input array
// y is an output array
#definec02,c14,c24,c32

#tdefine M 256 // no. of samples »
t#tdefine N 4 // no. of coeff, // Loop 1 /

int c[N] = {c0, c1, c2, c3}; for(int j=3; j<M; j++) {

X_3=x[j];

// Loop 1: x_2=x[j-1];

for(int j=N-1; j<M; j++) { x_1=x[j-2];
output=0; x_0=x[j-3];
// Loop 2: output=c0*x_3;
for(int i=0; i<N; i++) { output+=cl*x_2;

output+=c[i]*x[j-i]; @ output+=c2*x_1;

} output+=c3*x_0;
yliI = output; yljl = output;

}

b~
1 sample per 2 clock cycles

Code restructuring: FIR example

// X is an input array
//y is an output array x_0=x[0];
#tdefinec02,c14,c24,c32 x_1=x[1];

#define M 256 // no. of samples = x_2=x[2]; T
#tdefine N 4 // no. of coeff. // Loop 1 / // Loop 1 / _

int ¢[N] ={c0, c1, c2, c3}; for(int j=3; j<M; j++) { for(int j=3; j<M; j++) {
. x_3=x[j]; x_3=x[j];
// Loop 1: x_2=x[j-1]; output=c0*x_3;
for(int j=N-1; j<M; j++) { x_1=x[j-2]; output+=cl*x_2;
output=0; x_0=x[j-3]; output+=c2*x_1;
// Loop 2: output=c0*x_3; J output+=c3*x_0;
for(int i=0; i<N; i++) { output+=cl*x_2; x_0=x_1;
output+=c[i]*x[j-i]; J output+=c2*x_1; Xx_1=x_2;
} output+=c3*x_0; X_2=x_3;
ylJ] = output; ylj] = output; v[j] = output;

}

b~ -
1 sample per 2 clock cycles 1 sample per clock cycle ¢

// Loop 1 ye

for(int j=3; j<M; j+=2) {
x_3=x[jl;
output=c0*x_3;
output+=cl*x_2;

Code restructuring:
FIR example

eO(995

y[j] = output;

}
= b e
1 sample per 2 clock cycles 1 sample per clock cycle 2 samples per clock cycle [N

y[j] = output;

<

=

F=|'

2
output+=c2*x_1; F.%
x_0=x[0]; output+=c3*x_0; 2o
_ x_1=x[1]; x_0=x_1; &5
- o
/[Loopl // Loop 1 e - X_2=x_3; g3
fOf(lntJ=5.’>; j<M; j++) { for(int j=3; j<M; j++) { y[j] = output; %9%
x_3=x[jI; x_3=x[j]; X_3=x[j+1]; ® 2
x_2=x[j-1]; _ 0¥y 2 . _ %y 2- S 2
_2=xU-10; output=c0*x_3; output=c0*x_3; S =
x_1=x[j-2]; output+=c1*x_2; output+=c1*x_2; §§
x_0=x[j-3]; output+=c2*x_1; output+=c2*x_1; 3
_ _1; put+=c2*x_1; 33
output=c0*x_3; J output+=c3*x_0; J output+=c3*x_0; 7 ;
output+=cl*x_2; x 0=x 1; x 0=x 1 oG
output+=c2*x_1; x_1=x_2; x_1=x_2: ~Z
OUtpUt+=C3*X_O,' X—2=X_3,' X_2=X—3: %

y[j+1] = output;

http://dblp.uni-trier.de/db/books/collections/KHZ2016.html#CardosoW16

Code restructuring

* Manual

* Programmers need to know the impact of code styles and
structures on the generated architecture — with similarities to the
HDL developers, although in a different level

* Fully automatic with a source-to-source compiler
(refactoring tool)

* Need to devise the code transformations to apply and their
ordering

* Need source to source compilers integrating a vast portfolio of
code transformations

* Semi-automatic with a source-to-source compiler
(refactoring tool)
* Code transformations automatically applied but guided by users
e Users can define their own code transformations

12

Some approaches for code restructuring/opt.

- LegUp [Canis et al., ACM TECS’13]: flag selection and phase
ordering (via LLVM + opt) [Huang et al., ACM TRETS’15]
The Merlin Compiler and source to source optimizations by Cong
et.al., FSP’16
° Polyhed ral models Polyhedral transformations by Zuo et al., FPGA’13
- Polyhedral in nested loop pipelining by Morvan et al., IEEE

* Graph-based TCAVD,13 b PIpETIing BY

transformations - Graph-based code restructuring by Ferreira and Cardoso, FSP’18,
ARC’19

* Flag selection

* Phase ordering

13

Flag selection

* Generation controlled by enabling/disabling
compiler flags — sequence of optimizations are |
the ones built-in and pre-fixed for each flag

* Suitable to most common approaches, but
without taking full-advantage of
customization/specialization

Helping but without solving the code
restructuring problem!

14

Phase ordering o¢e¢EcEstiii

* Providing specific sequences of compiler optimizations

* Problem is very complex as besides selecting the phases one needs to
provide sequences — usually repeating phases

e Difficult to find the sequence!

* Fully dependent on the portfolio of phases a compiler may include —
phases need to justify their inclusion (i.e., if they pay-off)

Limitations for solving the code restructuring
problem!

15

Polyhedral models

* Applied to Static Control Parts — require specific loop
structures, statically known iteration spaces, limited to
affine domains

* Pure polyhedral models transform iteration spaces —
more advanced approaches combine the polyhedral
model with AST transformations

* Able to provide useful code transformations and justify

their inclusion in the portfolio of compiler Lhis Photo by Unknown Author s lcense

optimizations

Helping on solving the code restructuring
problem!

du

nder

16

https://www.laetusinpraesens.org/musings/flowgall.php
https://creativecommons.org/licenses/by-nc/3.0/

Graph-based transformations (our ongoing
work)

* Traces of computations are represented in
Dataflow Graphs (DFGs)

* Code restructuring problem is solved by graph
transformations

* Able to achieve high-levels of code restructuring
and suitable HLS directives

This Photo by Unknown Author is licensed under

A proof of concept... scalability still needs to
be solved!

https://en.wikipedia.org/wiki/Moebius-Kantor_Graph
https://creativecommons.org/licenses/by-sa/3.0/

Code restructuring: ongoing

Application : PROGRAMMING
COde Anal Sis G ra phs i LANGUAGE
(Software ¥o1S, (e.g., _ Graph-based Code '
. Profiling, Representing .. :
Programming , Optimizations Generation
Execution Traces)
Language)

4

V

¥

]
MATISSE CLAVA KADABRA

Input Strategies Strategies
7

Code restructuring: graph-based approach

Application T
Code Analvsis DFG i THE
(Software Profi?/in ' (Representi Graph-based Code N
Programming -g, ng a Trace) Optimizations Generation ROCR AN
Execution | LANGUAGE
Language) 4 ;

4 T .+ directives :

4
I/

Configurations

7 / Optimize DFG 4\ \/l\/ADO'*

HLx Editions

Split in subDFGs
Fold DFGs
|dentify data reuse
Balance chains of operations
Data partitioning

N /

Example — filter subband

void filter subband (double z[Nz],
s[Ns], double m[Nm]) {
double y[Nvy];
int 1,3,
for (i=0;i<Ny;i++)
{
vIi] = ;
for (3=0; j<(int)Nz/Ny;j++)
y[i] += z[i+Ny*J];

double

}
DFG
. . . (Representi
for (i=0;i<Ns;i++) ng a Trace)
{ 7

s[i]l= ;
for (7=0; J<Ny;j++)
s[1] 4= m[Ns*i+j] * y[J],

Source: Ferreira and Cardoso, ARC’2019

N Graph-based Code
N > .
Optimizations Generation

Configurations J

void result(double s[32], double z[

#pragma HLS array partition variable=s
#pragma HLS array partition variable=z
#pragma HLS array partition variable=m

s[0]1=0;

s[311=0;
for(int 1 =0; i < ; i=i+4) {
fpragma HLS pipeline
partial 1 2 = z[i+] + z[1i+ 1,
y0 = final partial 1;
y0 al0 = final partial 2;
for(int j =0; j < ;o J=3+1){
temp_l=m[(22) *j+i] * y0;
temp 2=m[(32)*J+i+1] * y0 al0;

partial in 1 = temp 1 + temp 2;
partial in 2 = temp 3 + temp 4;

], double m[1) {
cyclic factor=16
cyclic factor=16
cyclic factor=64

final part in = partial in 1+ partial in 2;

s[J]l=s[J] + final part in;
}

20

Experimental results

e Vivado HLS 2017.4 |-AelEie sl

N . C Original code without modifications
* Xilinx FPGA Artix-7/ C-inter Input code optimized with basic directives such as pipelinin
(xc72020clg484-1) P P PIpElining
C-high Improve C-inter with array partitioning and loop unrolling directives

Speedup Latency Clock

C-inter (#ccs) Period (ns)
Filter subband 81 5.8 5.8 293 (0.18) 17.1(0.9) 47537 (7.1) 42589 (3.6) 118 (4.1) 0
Dotprod 16 5.6 1.0 255(1) 8.9(1.0) 294(1.0) 581 (1.0 8 (1.0) 0
Autocorrelation 297 98.6 475 16(0.018) 8.6(1.1) 8025(4.00 7114(7.9) 160 (16.0) 0
1D FIR 237 30.0 16.2 120 (0.06) 8.7 (1) 4297 (0.9) 5641 (1.9) 192 (1.6) 0
2D Convolution 76 5.0 3.0 3886 (0.33) 8.7(1) 6376(1.2) 3408(0.6) 57 (1.5) 0
SVM 123 3.5 3.5 3208 (0.28) 8.4 (1) 14203 (1.6) 12506 (1.6) 91 (1.6) 76 (1.11)

Source: Ferreira and Cardoso, ARC’2019 21

Ongoing and future work

* Comparisons to the approaches using the polyhedral model to
restructure software code

* Scalability issues

* How to avoid the need of explicit large graphs when dealing with large traces /
loops with many iterations?

* Focus on optimizations regarding conditional paths

* Use of different execution paths to create specialized accelerators and
schemes to manage their execution at runtime

* Merge of execution paths in order to avoid one specialized accelerator per
execution path

Source: Ferreira and Cardoso, ARC’2019

Conclusion

e Source-to-source compilers as front-ends and HLS tools as the new
backends for advanced compilation to FPGAs

* Compiling to FPGAs needs more efficient and aggressive code
restructuring — a research challenge!

* Our recent efforts focus on an approach to optimize code for HLS
based on unfolded graph representations and graph transformations
— experimental results highlight the benefits of the approach

* A deeper study about code restructuring approaches needs to be
done!

. e
-

S~

Thank you! Questions?

Joao MP Cardoso
jmpc@acm.org

P J | INESCTEC
H TECNOLOGIA E CIENCIA

, LABORATORIO ASSOCIADO

——

[BAPORTO

FEU P FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

W2 SPeCS

Special-Purpose Computing
Systems, languages and tools

Acknowledgments

Afonso Ferreia
Joao Bispo

? SPeCS Pedro Pinto

sarpupese compuing 1 13E0 Carvalho

Sytmlgg and tools

Luis Reis

ANTAREE

SMILES
CONTEXTWA
PhD schoolarships from FCT

