Heterogeneous Compute Architectures For Deep Learning In The Cloud

Ken O’Brien, Nicholas Fraser, Michaela Blott
27th March 2019
Outline

- Why FPGAs?
- Deep Learning: Challenges & Solutions
- FINN
- FPGAs to ACAPs
Mega-Trend: Explosion of Data

> Astronomically growing amounts of data
 >> More sensors
 >> More users
 >> More use cases: Genomics (DNA) “Genomical”

We need significantly more compute resources to process and extract patterns / insights from this data!

Stephens, Zachary D., et al. "Big data: astronomical or genomical?"
Technology:
End of Moore’s Law & Dennard Scaling

- Economics become questionable
- Power dissipation becomes problematic
Era of Heterogeneous Compute using Accelerators

> Diversification of increasingly heterogenous devices and system
 >> Moving away from standard van Neumann architectures

> True Architectural innovation & Unconventional Computing Systems
Deep Learning
- customized precision arithmetic
What’s the Challenge?
Example: Convolutional Neural Networks

Forward Pass (Inference)

For ResNet50:
- 70 Layers
- 7.7 Billion operations
- 25.5 millions of weights

Basic arithmetic, incredible parallel but Huge Compute and Memory Requirements
Compute and Memory for Inference

Spectrum of Neural Networks

Inference (1 input) GOPS
average

Inference (1 input) MBytes
average

Huge Compute and Memory Requirements & Variations

*architecture independent
**1 image forward
*** batch = 1
**** int8
Floating Point to Reduced Precision Neural Networks
Deliver Competitive Accuracy

ImageNet Classification Top-5 Error Over Time (ImageNet)

- Float point improvements are slowing down
- Reduced precision competitive accuracy

BNN
CNN
Reduced Precision
Internal
Reducing Precision
Scales Performance & Reduces Memory

> Reducing precision shrinks LUT cost
 >> Instantiate 100x more compute within the same fabric

> Potential to reduce memory footprint
 >> NN model can stay on-chip => no memory bottlenecks

<table>
<thead>
<tr>
<th>Precision</th>
<th>Modelsize [MB] (ResNet50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>3.2</td>
</tr>
<tr>
<td>8b</td>
<td>25.5</td>
</tr>
<tr>
<td>32b</td>
<td>102.5</td>
</tr>
</tbody>
</table>

\[C = \text{size of accumulator} \times \text{size of weight} \times \text{size of activation} \]
Reducing Precision Inherently Saves Power

FPGA:

LSTM - Test Error vs Power (W)

Target Device: ZU7EV
- Ambient temperature: 25 °C
- 12.5% of toggle rate
- 0.5 of Static Probability
- Power reported for PL accelerated block only

ASIC:

Relative Energy Cost

Source: Bill Dally (Stanford), Cadence Embedded Neural Network Summit, February 1, 2017

Design Space Trade-Offs

IMAGENET CLASSIFICATION TOP5% VS COMPUTE COST $F(\text{LUT, DSP})$

- 1b weights
- 2b weights
- 5bit weights
- 8bit weights
- FP weights
- minifloat
- ResNet-50
- Syq

Reduced Precision can:
- reduce cost / resources
- save power
- scale performance
Scaling with FINN
FINN – Tool for Exploration of NNs of FPGAs

- **Design Flow Tool for Quantized Neural Networks**
 - Rapid access to network structure and compute/memory footprint statistics
 - Performance prediction for target device
 - Automatic architecture scaling and generation for target device

- **Multi-stage tool-flow**
 - Frontend
 - Design Space Exploration
 - Backend

- **Binary Network Release Available**
 - https://github.com/Xilinx/FINN
HW Architecture – Dataflow

Input image → Layer 0 → Layer 1 → ... → Layer X-1 → Inference output

Weight buffer → Weight buffer → Weight buffer

Layer 0:
- 37 MOPS Conv.
- W=8 A=3

Layer 1:
- 797 MOPS Conv. + MaxPool
- W=1 A=3

Layer X-1:
- 797 MOPS Conv.
- W=1 A=3

Layer X:
- 21 MOPS Conv.
HW Architecture – Dataflow

Weight buffering in on-chip memory
- High operational intensity for inference
- Small intermediate buffer for feature maps
 - No data reordering between layers
 - Multi-line buffering for convolutions
 - Low latency, high throughput

Input image → Layer 0 → Layer 1 → ... → Layer X-1 → Inference output
HW Architecture – Dataflow

1 Compute engine per layer
- Ad-hoc arithmetic according to layer quantization
HW Architecture – Dataflow

1 Compute engine per each layer
- Adjust parallelism with compute requirements
Frontend Stage – Import and Network Statistics

Neural Network Description (Prototxt)

```prototxt
layer {
  name: "qt_inp"
  type: "Quant"
  bottom: "bn_inp"
  top: "qt_inp"
  quant_param {
    forward_func: "hwqg"
    backward_func: "relu"
    centers: 0.538 centers: clip_thr: 1.614
  }
}
layer {
  name: "ipl"
  type: "BinaryInnerProduct"
  bottom: "qt_inp"
  top: "ipl"
  param {
    lr_mult: 1
decay_mult: 1
  }
inner_product_param {
  num_output: 256
}
```

Per layer operations

<table>
<thead>
<tr>
<th>ops/layer</th>
<th>171320832</th>
<th>892296000</th>
<th>595745280</th>
<th>135364608</th>
<th>127401984</th>
<th>102760448</th>
<th>33554432</th>
<th>8192000</th>
</tr>
</thead>
</table>

Topology summary

<table>
<thead>
<tr>
<th>out_dim</th>
<th>filter_dim</th>
<th>in_chan</th>
<th>out_chan</th>
<th>parallel</th>
<th>in_dim</th>
</tr>
</thead>
<tbody>
<tr>
<td>212.0</td>
<td>12</td>
<td>3</td>
<td>68</td>
<td>1</td>
<td>224</td>
</tr>
<tr>
<td>54.0</td>
<td>5</td>
<td>34</td>
<td>90</td>
<td>2</td>
<td>54</td>
</tr>
<tr>
<td>26.0</td>
<td>3</td>
<td>180</td>
<td>272</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>12.0</td>
<td>3</td>
<td>136</td>
<td>192</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>12.0</td>
<td>3</td>
<td>192</td>
<td>128</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>5.0</td>
<td>1</td>
<td>12544</td>
<td>4096</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>1.0</td>
<td>1</td>
<td>4096</td>
<td>4096</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>1.0</td>
<td>1</td>
<td>4096</td>
<td>1000</td>
<td>1</td>
<td>1000</td>
</tr>
</tbody>
</table>
Design Space Exploration Stage: Balanced Dataflow

Neural Network Description

```json
{layer {
  name: "qt_inp"
  type: "Quant"
  bottom: "bn_inp"
  top: "qt_inp"
  quant_param {
    forward_func: "hwgg"
    backward_func: "relu"
    centers: 0.538 centers: 0.538
    clip_thr: 1.614
  }
}
```

Device Specification File

```json
{
  "name": "Xilinx:KU115",
  "type": "fgga",
  "frequency": 200,
  "resources": {
    "LUT": 1451000,
    "DSP": 5526,
    "BRAM": 75.9,
    "URAM": 0
  }
}
```

Folding Factor Calculation

<table>
<thead>
<tr>
<th>NAME</th>
<th>SIMD</th>
<th>PE</th>
<th>MMV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConvolutionLayer</td>
<td>3</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>ConvolutionLayer</td>
<td>34</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>ConvolutionLayer</td>
<td>36</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>ConvolutionLayer</td>
<td>34</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ConvolutionLayer</td>
<td>32</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FullyConnectedLayer</td>
<td>32</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>FullyConnectedLayer</td>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FullyConnectedLayer</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Performance Prediction

Achieved FPS: 27400 with 15.83% LUT utilization and 48.73% BRAM utilization

LUTS: 141004/890829 BRAM: 787/1615
Convolutional Layer – Folding

Input Feature Map

Weights

Output Feature Map

Width

Channels

Height

SIMD

SIMD

PE

PE
Design Space Exploration Stage: Balanced Dataflow

Neural Network Description

```json
{  
    "layer": {  
        "name": "qt_inp",
        "type": "Quant",
        "bottom": "bn_inp",
        "top": "qt_inp",
        "quant_param": {  
            "forward_func": "hwgg",
            "backward_func": "relu",
            "clip_thr": 1.614
        }
    }
}
```

Device Specification File

```json
{
    "name": "XLNX:KU115",
    "type": "fgpa",
    "frequency": 200,
    "resources": {  
        "LUT": 1451000,
        "DSP": 5526,
        "BRAM": 75.9,
        "URAM": 0
    }
}
```

Folding Factor Calculation

<table>
<thead>
<tr>
<th>NAME</th>
<th>SIMD</th>
<th>PE</th>
<th>MMV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConvolutionLayer</td>
<td>3</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>ConvolutionLayer</td>
<td>34</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>ConvolutionLayer</td>
<td>36</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>ConvolutionLayer</td>
<td>34</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ConvolutionLayer</td>
<td>32</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FullyConnectedLayer</td>
<td>32</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>FullyConnectedLayer</td>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FullyConnectedLayer</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Performance Prediction

1: Given a target FPS, what resources are required?
2: Given total resources, what FPS can be achieved?

Achieved FPS: 27400 with 15.83% LUT utilization and 48.73% BRAM utilization
LUTS: 141004/896829 BRAM: 787/1615
Vivado HLS – QNN Library

```
// convolution parameters
unsigned int ConvKernelDim,               // e.g. 3 for a 3x3 conv kernel (assumed square)
unsigned int IFMChannels,                // number of input feature maps
unsigned int IFMDim,                     // width of input feature map (assumed square)
unsigned int OFMChannels,                // number of output feature maps
unsigned int OFMDim,                     // IFMDim-ConvKernelDim+1 or less
unsigned int Stride,

// matrix-vector unit parameters
unsigned int SIMDWidth,                   // number of SIMD lanes
unsigned int PECount,                     // number of PEs
unsigned int WMemCount,                   // entries in each PEs weight memory
unsigned int TMemCount,                   // entries in each PEs threshold memory

// precision parameters
unsigned int WeightsPrecision,           // Number of bits in thresholds
unsigned int ThresholdsPrecision,        // Number of bits in thresholds
unsigned int MacPrecision,               // MAC bitwidth
unsigned int Input_precision,            // Input data bitwidth
unsigned int ActivationPrecision,        // Output data bitwidth
unsigned int ActivationType<8>,          // For first layer use int value

void ConvolutionLayer_Same_Batch(stream<ap_uint<IFMChannels * Input_precision>> & in,
```
Backend Stage - Hardware/ Runtime Generation

Neural Network Description

```json
{layer {
  name: "qt_inp"
  type: "Quant"
  bottom: "bn_inp"
  top: "qt_inp"
  quant_param {
    forward_func: "hwgg"
    backward_func: "relu"
    centers: 0.538 centers: 1.614
  }
}
```

Device Specification File

```json
{
  "name": "XLNX:KU15",
  "type": "fpga",
  "frequency": 200,
  "resources": {
    "LUT": 1451000,
    "DSP": 5526,
    "BRAM": 75.9,
    "URAM": 0
  }
}
```

Optimal Folding Factors

FINN QNN Library

FINN

Hardware Generation

```c
// definition for the streaming QNN accelerator
void DoCompute(stream<ap uint<32>> & inStream, stream<ap uint<32>> & outStream) {
  // variable declarations for internal streams
  stream<ap uint<128>> & FPGABufferLayer_1;
  #pragma HLS stream depth=2 variable=FPGABufferLayer_1
  stream<ap uint<128>> & FPGABufferLayer_3;
  #pragma HLS stream depth=2 variable=FPGABufferLayer_3

  // streaming compute engine for each layer
  #pragma HLS DATAFLOW

  MatrixVectorPrecisionBatch<16, 64, 1, 64, 784, 256, 0, FPGABufferLayer_1, weights_FPGABipolarMatrixThresholdLayer_8, MatrixVectorPrecisionBatch<64, 64, 1, 64, 256, 256, 0, FPGABufferLayer_3, weights_FPGABipolarMatrixThresholdLayer_8, ...
```
Hardware Generation – Network Dataflow Example

> top.cpp
 >> Sequence of layers, 1:1 with network topology

```c
// layer 0 (conv)
// layer config
/*
Using pcCount = 16 simdCount = 3 for engine 0
extracting conv-BN complex, OPM=64 IPV=3 k=3
Layer 0: 64 x 27
Width = 56 TMem = 4 */
#define LB_K 3
#define LB_IFM_CH 3
#define LB_OFM_DIM 32
#define LB_OFM_CH 64
#define LB_OFM_DIM 30
// hardware config
#define LB_SIZHD 3
#define LB_PE 16
#define LB_WMEM 36
#define LB_THEM 4
// layer 1 (conv)
// layer config
/*
Using pcCount = 32 simdCount = 32 for engine 1
extracting conv-BN complex, OPM=64 IPV=64 k=3
Layer 1: 64 x 576
Width = 56 TMem = 2 */
#define L1_K 3
#define L1_IFM_CH 64
#define L1_IFM_DIM 30
#define L1_OFM_CH 64
#define L1_OFM_DIM 28
// hardware config
#define L1_SIZHD 32
#define L1_PE 32
#define L1_WMEM 36
#define L1_THEM 2
```  

> config.h
 >> Finn-generated configuration, with network configuration values + parallelism-specific values

> (possible) params.h
 >> Finn-generated weights values to be hardcoded in the bitstream
Scaling Parallelism

> For each layer, set all SIMD, PE to 1
 - Single MAC

> Until hardware no longer fits on device or FPS target reached
 - Find slowest layer
 * Increase SIMD to next factor of IFM_CHANS or
 * Increase PE to next factor of OFM_CHANS

Goal: Calculate folding factors such that layers produce balanced dataflow
FINN
Performance Results

- Up to 50TOPS measured performance for BNNs
- Multiple precision types supported
 - 8-bit in DSPs, reduced precision in LUTs

<table>
<thead>
<tr>
<th>Network</th>
<th>Platform</th>
<th>Precision (W/A)</th>
<th>Performance (TOPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>AWS-F1</td>
<td>1/1</td>
<td>50.8</td>
</tr>
<tr>
<td>CNV</td>
<td>AWS-F1</td>
<td>1/1</td>
<td>12.1</td>
</tr>
<tr>
<td>Tincy-YOLO</td>
<td>AWS-F1</td>
<td>1/3</td>
<td>5.3</td>
</tr>
<tr>
<td>DoReFa-Net/PF</td>
<td>AWS-F1</td>
<td>1/2</td>
<td>11.4</td>
</tr>
</tbody>
</table>

From FPGAs to ACAPs
New Heterogeneous Devices

> From the Xilinx World: Evolution of FPGAs to ACAPs

Up to ~147 TOPS of Int8 performance!
Conclusions

> As Moore's law has ended, heterogeneous accelerated systems have emerged

> High computational demand of machine learning applications is driving hardware development

> Customized dataflow architectures and memory subsystems, custom precisions
 • Dramatic performance scaling and energy efficiency benefits
 • Target Datacenter or Embedded devices
 • Enabling new exciting trade-offs within the design space

> New ACAP devices with AI engines
Thanks!

Adaptable.
Intelligent.