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Near-Memory Processing:
It’s the SW and HW, stupid!
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1976: 8086 processor—6,500 transistors ./

Where do we go from here?
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An exponential 1s ending...

10%, 20%, .. improvement in performance
of component X won’t get you far

— No new transistors
— Fixed power ceiling
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Emerging technologies are either -

incremental (e.qg., Intel’'s Xpoint Memory) A ;
or cover niche areas (e.g., quantum)

3
.
=~
i
oIt
"
Ly
W—

ay

)
- s

N\

/ —
;L P



oooooo
Y Nid \". THE UNIVERSITY of EDINBURGH

Institute for Computing
Systems Architecture

€ informatics ICSA

The Way Forward: Vertical Integration

Software/hardware co-design
for high efficiency and programmability

Is this always a good idea?

No!

Need high volume for cost-efficiency

Need large perf/Watt gains to be worth
the effort
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This Talk
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Vertical integration
for

INn-memory data analytics

ML
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Data Analytics Takes Center Stage

User data grows exponentially =~ T W ek

< Sphinx =i p
— Need to monetize data e
- - A e e 16 TP A

In-memory data operators
— Poor locality
— Low computational requirement
— Highly parallel
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Data Analytics Takes Center Stage

User data grows exponentially 2% W riak
e 8

— Need to monetize data Breds  oeee
Spo P e

In-memory data operators
— Poor locality
— Low computational requirement
— Highly parallel

Data movement

— High energy cost
— High BW requirement

Data movement bottlenecks data analytics
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Memory access

Fixed point Add 640 p)
0.1'p)

A A WU
CPU

Data access much more expensive than arithmetic operation
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DRAM BW Bottleneck
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100’s of GB/s mtemally I

Row Buffer

A A WU
CPU

24 GB/s oﬁ‘—chlp BW

Internal DRAM BW presents big opportunity
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Logic inside DRAM? Not a Good Idea

Fabrication processes not compatible _

— DRAM is optimized for density
— Logic is irregular, wire-intensive Logic

7
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In-memory logic failed in the 90s
— DRAM is cost-sensitive

Must exploit DRAM in a non-disruptive manner
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Near-Memory Processing (NMP)
3D logic/DRAM stack

— Exposes internal BW to processing elements

— But constrains logic layer's area/power envelope

640 p)
24 GB/s
AVAW - 150 pJ
Y 7 B N "4 128 GB/s
CPU — DRAM _ aae®®*’

Logic

Explort the bandwidth without data movement
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DRAM internals optimized for density

Institute for Computing
Systems Architecture

DRAM accesses must activate rows

— Single access activates KBs of data
— Activations dominate access latency & energy

Can't utilize internal BW with random access
— Need to maintain many open rows
— Complex bookkeeping logic

Need sequential access to utilize DRAM BW

14
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NMP HW-Algorithm Co-Design
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Algorithms: Must have sequential access

— Even if we perform more work

Hardware: Must leverage data parallelism
— On a tight area/power budget

HW-algorithm co-design necessary to make best use of NMP
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Example data operator: Join

lterates over a pair of tables to find matching keys

Major operation in data analytics

Q: SELECT ... FROM A, B WHERE A.Key = B.Key
A B Result
C A
T G
A : 7 A
B M E
E 2
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Systems Architecture
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Baseline: CPU Hash Join

Best performing algorithm in CPU-centric systems

Performed in two phases: Partition & Probe

1. Partition generates cache sized partitions
2. Probe builds and queries cache resident hash tables

Partition Probe
A E —_ [ F
C D F £ | E
F C B —p| B
A
D
B B
B F
R

Optimized for random accesses to cached data
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Goal: maximum MLP
« Limited by bookkeeping logic
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NMP Hash Join
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Poor row buffer utilization “___DRAM

NMP
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NMP Hash Join
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DRAM

NMP

Random accesses are inefficient and under-utilize internal BW
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Eliminate Random Access?

Insight: use Sort Join
— Performs mostly sequential accesses
— But has higher algorithmic complexity

Trade algorithmic complexity for desirable access pattern

Hash join Sort join
O(n) random accesses O(n log n) sequential acesses
— 1> [E > T b OB
X D T c
T >LL A D
—»| C D i3

Utilizing internal DRAM BW compensates for increased cost
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NMP Sort Join: Sequential Accesses

£
base —
U m
base =
D
To DRAM
Drop 000 logic
» Reduces area/power of NMP ____DRAM
Add stream buffer
« Simple logic utilizes BW NMP

22
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NMP Sort Join: Sequential Accesses

A
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' base| &B| B
3121110 D
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To DRAM

DRAM

NMP

23
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NMP Sort Join: Sequential Accesses

Good row buffer utilization |
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NMP Sort Join: Sequential Accesses
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NMP Sort Join: Sequential Accesses

A
base &AJ‘ —(E:
413121 1F G
base| &B B
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Sequential access moves bottleneck to compute
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NMP Sort Join: Compute
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General purpose SIMD keeps up with memory BW
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Partitioning Phase

Partitioning basics:
— Each partition contains buckets of objects

— For a given object, target bucket determined using
a hash

— The order of objects within each bucket is
irrelevant - buckets are unordered @

Insight: the order in which tuples are written
into a bucket in the target partition is irrelevant

Partrtioning phase: tuples are permutable
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Partitioning Phase

Leverage tuple’'s permutability property

Turn partition’s random accesses sequential
— Enable use of SIMD during partition

29
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Mondrian

Algorithm + hardware co-design for near-memory
processing of data analytics

NMP Algorithms

— Use sequential memory accesses
— Avoid random memory accesses

— Target partitioning and compute phases

NMP Harware

— High memory parallelism using simple SIMD hardware
— Exploit sequential memory accesses

30
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Methodology
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— Scan

Simulated systems:
« CPU-centric: ARM Cortex-A57

— 16 cores
— 3-wide,128-entry ROB @ 2GHz

— Join

— Group By
Sort

Memory Subsystem:

4 HMC stacks
— 20 GB/s external BW /~ * Mondrian: SIMD in-order

: — 16 cores per stack
— 128 GB/s internal BW P
— 1024-bit SIMD @ 1GHz

* NMP: Mobile ARM core

— 16 cores per stack
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Evaluation: Performance
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B NMP  ®Mondran

Scan Sort
Operator

Group by

Join

32
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Evaluation: Performance

100

B NMP  ®Mondran

Speedup (log scale)
o

Scan Sort Group by Join
Operator

Mondrian achieves superior BW utilization
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Evaluation: Performance

100
B NMP  ®Mondran

Speedup (log scale)
o

Scan Sort Group by Join
Operator

NMP can't utilize memory BW with random accesses
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Evaluation: Performance

100
B NMP  ®Mondran

Speedup (log scale)
o

Scan Sort Group by Join
Operator

Mondrian BW utilization compensates for extra log(n) work
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Summary

End of technology scaling = must think vertical
— Software + hardware co-design

Big data analytics are a critical workload
— Large datasets, little locality = memory bottleneck!

Moving compute near memory improves performance
— But need to conform to DRAM constraints

Mondrian is algorithm-hardware NMP for analytics
— Adapt algorithms/HW to DRAM constraints
— Sequential rather than random memory access
— Simple hardware to exploit memory bandwidth

Institute for Computing

36
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Thank you!

Questions?

inf.ed.ac.uk/bgrot

Itttf Cmp ng
tems Architec
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Mondrian Energy Efficiency
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Efficiency Improvement
(performance /energy)

Operator

Scan Sort Group by Join
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