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Trends and challenges

= Performance and power consumption are increasingly dominated by
data transfer and memory system operation
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Specialization Data-centric computing

= Workload-optimized systems = Bring computation closer to the data
= General-purpose accelerators = Reduce expensive data transfers by moving
* GPUs, FPGAs, DSPs from a compute-centric to a data-centric model

= Fixed-function special-purpose
accelerators (e.g., TPU)
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Near-memory acceleration platform

Conventional systems

= Memory system performance and power consumption depend on a complex interaction
between workload and memory system

= No adaptive/programmable control over data flows (hardware-managed controllers)

=» Negative impact on memory-bound applications (e.g., stencil computation)
 challenging to efficiently overlap computation and data access/transfer
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Near-memory acceleration platform

Our approach

= Programmable control over data flows between memory and near-memory accelerators
* tightly control data access/transfer and computation to maximize overlap
* optimize bandwidth utilization

= Memory controller
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Near-memory acceleration platform

Enabling technology
= Access Processor micro-architecture based on B-FSM programmable state machine

= B-FSM monitors all units in parallel
* evaluates hundreds of combinations of conditions in each clock cycle, and,
* inresponse, dispatches instructions within 1-2 clock cycles (> 3 GHz, ASIC)

=» manage data flows at speeds of tens of GB/s (DDR4) to hundreds of GB/s (HBM)
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Stencil computing

Stencil computing in weather/climate applications
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Stencil computing

Stencil computing in weather/climate applications
= Stencil: operands fetched from ‘evaluation point’ and
close neighbors (relative addressing)

= Stencils typically composition of elementary stencils
= Can use up to ~25 variable- / temporary arrays (3D)

= ‘vertical’ and ‘horizontal’ stencils typically alternate

= Array data layout chosen once for ‘dynamical core’

= Holistic optimization required at dynamical core level

=» programmability of access processor
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Compilation flow
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to analyze and optimize memory access patterns
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Implementation
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Transprecision

Transprecision in the Access Processor
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Experimental results

Preliminary POWER8®/DMI-based prototype (DDR3, Altera® Stratix®-V)
= Demonstrated at OpenPOWER™ summit 2016/Nvidia® GTC

= 20-fold performance improvement for several functions (e.g., FFT, min/max) over
optimized multi-threaded software implementations on POWER8®

POWER9™/OpenCAPI™-based prototypes
= DDR4 card operational recently (HBM card operational standalone)

= |nitial experiments confirm that Access Processor can fully utilize the available memory
bandwidth through overlap control for many applications

=» processing performance (rate) then only dependent on memory bandwidth

= Measured on single DDR4 channel: ~¥9 GB/s read data, ~9 GB/s write results (total 18 GB/s)
* 1024-pts FFT (64-bit complex sample): 1.15 GSamples/sec processing rate
* 2D Jacobi stencil (64x64 matrix, double-precision): 280K matrix updates/second (R+W)

(note: actual bandwidth/processing rates fluctuate due to DRAM refresh cycles and host access)
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Conclusions

Near-memory acceleration
= “Just scaling up” today’s HPC systems is not sufficient to arrive at exascale systems

= Near-memory acceleration might be one of the key innovations to realize this objective
for an important class of applications

= Besides optimizing performance and power by reducing data transfers, Access
Processor-based near-memory acceleration offers new opportunities to

* make memory system operation programmable such that it can be adapted to
workload characteristics and used for balancing performance and power

* realize new processing architectures that reduce (programmability) overhead by
exploiting available regularity in processing and/or data access

= Ongoing work focuses on evaluating the performance impact of the near-memory
acceleration platform (DDR4, HBM) at application level for a wide range of workloads
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