
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Preparing for Extreme Heterogeneity in High
Performance Computing

Jeffrey S. Vetter
With many contributions from FTG Group and Colleagues

DATE 2019
Special Session on Embedded meets Hyperscale and HPC
27 Mar 2019

22

Highlights

• Recent trends in extreme-scale HPC paint an uncertain future
– Contemporary systems provide evidence that power constraints are driving architectures to change rapidly
– Multiple architectural dimensions are being (dramatically) redesigned: Processors, node design, memory systems, I/O
– Complexity is our main challenge

• Applications and software systems are all reaching a state of crisis
– Applications will not be functionally or performance portable across architectures
– Programming and operating systems need major redesign to address these architectural changes
– Procurements, acceptance testing, and operations of today’s new platforms depend on performance prediction and benchmarking.

• We need portable programming models and performance prediction now more than ever!

• Programming systems must provide performance portability (beyond functional portability)!!
– Emerging memory hierarchies

• DRAGON – transparent NVM access from GPUs
• NVL-C – user management of nonvolatile memory in C
• Papyrus – parallel aggregate persistent storage

– Heterogeneous processor (not covered today)
• OpenACC->FGPAs
• Clacc – OpenACC support in LLVM

• Performance prediction is critical for design and optimization (not covered today)

6

The three technical areas in ECP have the necessary components
to meet national goals

Application Development (AD) Software
Technology (ST)

Hardware
and Integration (HI)

Performant mission and science applications @ scale

Foster application
development

Ease
of use

Diverse
architectures

HPC
leadership

Integrated delivery of ECP
products on targeted systems at
leading DOE computing facilities

Produce expanded and vertically
integrated software stack to achieve
full potential of exascale computing

Develop and enhance the predictive
capability of applications critical to

the DOE

25 applications ranging from
national security, to energy, earth

systems, economic security,
materials, and data

80+ unique software
products spanning

programming models
and run times, math
libraries, data and

visualization

6 vendors supported
by PathForward

focused on memory,
node, connectivity

advancements;
deployment to facilities

7

ORNL 75th Lab Day and Summit Unveiling – 8 June 2018
#1 on Top 500

8

National security
Stockpile

stewardship
Next-generation
electromagnetics

simulation of hostile
environment and

virtual flight testing for
hypersonic re-entry

vehicles

Energy security
Turbine wind plant

efficiency
High-efficiency,
low-emission

combustion engine
and gas turbine

design
Materials design for

extreme
environments of
nuclear fission

and fusion reactors
Design and

commercialization
of Small Modular

Reactors
Subsurface use

for carbon capture,
petroleum extraction,

waste disposal
Scale-up of clean

fossil fuel combustion
Biofuel catalyst

design

Scientific discovery
Find, predict,

and control materials
and properties

Cosmological probe
of the standard model

of particle physics
Validate fundamental

laws of nature
Demystify origin of
chemical elements

Light source-enabled
analysis of protein

and molecular
structure and design
Whole-device model

of magnetically
confined fusion

plasmas

Earth system
Accurate regional

impact assessments
in Earth system

models
Stress-resistant crop
analysis and catalytic

conversion
of biomass-derived

alcohols
Metagenomics
for analysis of

biogeochemical
cycles, climate

change,
environmental
remediation

Economic security
Additive

manufacturing
of qualifiable
metal parts

Reliable and
efficient planning
of the power grid
Seismic hazard
risk assessment
Urban planning

Health care
Accelerate

and translate
cancer research

ECP applications target national problems in 6 strategic areas

99

Major Trends in Computing

10

Contemporary devices are approaching fundamental limits

I.L. Markov, “Limits on fundamental limits to computation,” Nature, 512(7513):147-54,
2014, doi:10.1038/nature13570.

Economist, Mar 2016

R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc, “Design of ion-implanted
MOSFET's with very small physical dimensions,” IEEE Journal of Solid-State Circuits, 9(5):256-68, 1974,

Dennard scaling has already ended. Dennard observed that voltage and
current should be proportional to the linear dimensions of a transistor: 2x
transistor count implies 40% faster and 50% more efficient.

1111

Business climate reflects this uncertainty, cost, complexity, consolidation

12

Sixth Wave of Computing

http://www.kurzweilai.net/exponential-growth-of-computing

Transition
Period

6th wave

1313

Transition Period Predictions

Optimize Software and
Expose New

Hierarchical Parallelism

• Redesign software to
boost performance
on upcoming
architectures

• Exploit new levels of
parallelism and
efficient data
movement

Architectural
Specialization and

Integration

• Use CMOS more
efficiently for our
workloads

• Integrate components
to boost performance
and eliminate
inefficiencies

Emerging Technologies

• Investigate new
computational
paradigms
• Quantum
• Neuromorphic
• Advanced Digital
• Emerging Memory

Devices

1414

https://www.thebroadcastbridge.com/content/entry/1094/altera-announces-arria-10-2666mbps-ddr4-memory-fpga-interface

Architectural specialization is quickening
• Vendors, lacking Moore’s Law, will need to continue

to differentiate products (to stay in business)

• Grant that advantage of better CMOS process stalls

• Use the same transistors differently to enhance
performance

• Architectural design will become extremely
important, critical

– Dark Silicon
– Address new parameters for benefits/curse of Moore’s

Law

http://www.wired.com/2016/05/google-tpu-custom-chips/

D.E. Shaw, M.M. Deneroff, R.O. Dror et al., “Anton, a special-purpose machine for molecular dynamics
simulation,” Communications of the ACM, 51(7):91-7, 2008.

http://www.theinquirer.net/inquirer/news/2477796/intels-nervana-ai-
platform-takes-aim-at-nvidias-gpu-techology

https://fossbytes.com/nvidia-volta-gddr6-2018/

Xilinx ACAP

1515

Turing Award Lecture on June 4:
A New Golden Age for Computer
Architecture

• Domain-specific HW/SW Co-Design

• Enhanced Security

• Open Instruction Sets

• Agile Chip Development

1616

Transition Period will be Disruptive

• New devices and architectures may not be
hidden in traditional levels of abstraction

– A new type of CNT transistor may be completely
hidden from higher levels

– A new paradigm like quantum may require new
architectures, programming models, and
algorithmic approaches

• Solutions need a co-design framework to
evaluate and mature specific technologies

Layer Switch, 3D NVM Approximate Neuro Quantum
Application 1 1 2 2 3
Algorithm 1 1 2 3 3
Language 1 2 2 3 3
API 1 2 2 3 3
Arch 1 2 2 3 3
ISA 1 2 2 3 3
Microarch 2 3 2 3 3
FU 2 3 2 3 3
Logic 3 3 2 3 3
Device 3 3 2 3 3

Adapted from IEEE Rebooting Computing Chart

1717

HPC Architectures Reflect these Trends

1818

LLNL
IBM/NVIDIA

Department of Energy (DOE) Roadmap to Exascale Systems
An impressive, productive lineup of accelerated node systems supporting DOE’s mission

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
Cray/AMD/NVIDIA

LANL/SNL
TBD

ANL
Intel/Cray

ORNL
TBD

LLNL
TBD

LANL/SNL
Cray/Intel Xeon/KNL

2012 2016 2018 2020 2021-2023

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia (10)

Cori (12)

Trinity (6)

Theta (24)Mira (21)

Titan (9) Summit (1)

NERSC-9Perlmutter

Aurora

ANL
Cray/Intel KNL

LBNL
Cray/Intel Xeon/KNL

First U.S. Exascale Systems

Sierra (2)

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!]

Jan 2018

Heterogeneous Cores

Deep Memory incl NVM

Plateauing I/O Performance

1919

2020

During this Sixth Wave transition, Complexity is our major challenge!

Design: How do we design future systems so that they are
better than current systems on mission applications?

• Entirely possible that the new system will be slower than the old system!
• Expect ‘disaster’ procurements

Programmability: How do we design applications with
some level of performance portability?

• Software lasts much longer than transient hardware platforms
• Adapt or die

2121

Final Report on Workshop on Extreme Heterogeneity
1. Maintaining and improving programmer productivity

– Flexible, expressive, programming models and languages
– Intelligent, domain-aware compilers and tools
– Composition of disparate software components

• Managing resources intelligently
– Automated methods using introspection and machine learning
– Optimize for performance, energy efficiency, and availability

• Modeling & predicting performance
– Evaluate impact of potential system designs and application mappings
– Model-automated optimization of applications

• Enabling reproducible science despite non-determinism & asynchrony
– Methods for validation on non-deterministic architectures
– Detection and mitigation of pervasive faults and errors

• Facilitating Data Management, Analytics, and Workflows
– Mapping of science workflows to heterogeneous hardware and software services
– Adapting workflows and services to meet facility-level objectives through learning

approaches

https://orau.gov/exheterogeneity2018/ https://doi.org/10.2172/1473756

https://orau.gov/exheterogeneity2018/
https://doi.org/10.2172/1473756

Emerging Memory Systems

2323

Memory Systems Started
Diversifying Several Years Ago
• Architectures

– HMC, HBM/2/3, LPDDR4, GDDR5X, WIDEIO2,
etc

– 2.5D, 3D Stacking

• Configurations
– Unified memory
– Scratchpads
– Write through, write back, etc
– Consistency and coherence protocols
– Virtual v. Physical, paging strategies

• New devices
– ReRAM, PCRAM, STT-MRAM, 3D-Xpoint

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e

https://www.micron.com/~/media/track-2-images/content-images/content_image_hmc.jpg?la=en

H.S.P. Wong, H.Y. Lee, S. Yu et al., “Metal-oxide RRAM,” Proceedings of the IEEE, 100(6):1951-70, 2012.

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High Performance
Computing,” CiSE, 17(2):73-82, 2015.

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e83c88e_1.jpg
https://www.micron.com/%7E/media/track-2-images/content-images/content_image_hmc.jpg?la=en

24

Complexity in the Expanding and Diversifying Memory Hierarchy

Image Source: IMEC

25

Many Memory Architecture Options under Consideration…

I.B. Peng et al, “Siena: Exploring the Design Space of Heterogeneous Memory Systems,” in SC18, 2018

26

NVRAM Technology Continues to Improve – Driven by Broad Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

2727

Programming NVM Systems Portably

2828

NVM Design Choices

• Dimensions
– Integration point
– Exploit persistence

• ACID?
– Scalability
– Programming model

• Our Approaches
– Transparent access to NVM from GPU
– NVL-C: expose NVM to user/applications
– Papyrus: parallel aggregate persistent

memory
– Many others (See S. Mittal and J. S. Vetter, "A Survey of

Software Techniques for Using Non-Volatile Memories for
Storage and Main Memory Systems," in IEEE TPDS 27:5, pp.
1537-1550, 2016)

http://j.mp/nvm-sw-survey

http://j.mp/nvm-sw-survey

2929

NVM Opportunities in Applications

• Burst Buffers, C/R

• Persistent data structures like materials
tables

• In situ visualization and analytics

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-Performance Computing,” Computing in Science & Engineering, 17(2):73-82, 2015.

http://ft.ornl.gov/eavl

[Liu, et al., MSST 2012]

Empirical results show many reasons…
•Lookup, index, and permutation tables
•Inverted and ‘element-lagged’ mass matrices
•Geometry arrays for grids
•Thermal conductivity for soils
•Strain and conductivity rates
•Boundary condition data
•Constants for transforms, interpolation
•MC Tally tables, cross-section materials tables…

http://ft.ornl.gov/eavl

3030

Transparent Runtime Support for NVM
from GPUs

3131

DRAGON: API and Integration

31

// Allocate host & device memory
h_buf = malloc(size);
cudaMalloc(&g_buf, size);

while() { // go over all chunks
// Read-in data
f = fopen(filepath, “r”);
fread(h_buf, size, 1, f);

// H2D Transfer
cudaMemcpy(g_buf, h_buf, H2D);

// GPU compute
compute_on_gpu(g_buf);

// Transfer back to host
cudaMemcpy(h_buf, g_buf, D2H);
compute_on_host(h_buf);

// Write out result
fwrite(h_buf, size, 1, f);

}

// mmap data to host and GPU
dragon_map(filepath, size,

D_READ | D_WRITE, &g_buf);

// Accessible on both host and GPU
compute_on_gpu(g_buf);
compute_on_host(g_buf);

// Implicitly called when program
exits
dragon_sync(g_buf);
dragon_unmap(g_buf);O

ut
-o

f-
C

or
e

us
in

g
C

U
D

A DRAGON

• Similar to NVIDIA’s Unified Memory (UM)
• Enable access to large memory on NVM

• UM is limited by host memory

Notes

3232

DRAGON Operations: Key Components

• Three memory spaces:
– GPU Mem (GM) as 1st level cache
– Host Mem (HM) as 2nd level cache
– NVM as primary storage

• Modified GPU driver
– Manage data movement &

coherency

• GPU MMU with HW Page Fault
– Manage GPU virtual memory

mapping

• Page cache
– Buffer & accelerate data access

32P. Markthub, M.E. Belviranli et al., “DRAGON: Breaking GPU Memory Capacity Limits with Direct NVM Access,” in SC18, 2018
https://github.com/pakmarkthub/dragon

https://github.com/pakmarkthub/dragon

3333

Results with Caffe

• Improves capability and productivity
– Larger problem sizes transparently
– Handles irregularity easily
– Surprising performance on applications

3434

Language support for NVM:
NVL-C - extending C to support NVM

3535

NVL-C: Portable Programming for NVMM
– Minimal, familiar, programming interface:

– Minimal C language extensions.
– App can still use DRAM.

– Pointer safety:
– Persistence creates new categories of

pointer bugs.
– Best to enforce pointer safety constraints at

compile time rather than run time.
– Transactions:

– Prevent corruption of persistent memory in
case of application or system failure.

– Language extensions enable:
– Compile-time safety constraints.
– NVM-related compiler analyses and

optimizations.
– LLVM-based:

– Core of compiler can be reused for other
front ends and languages.

– Can take advantage of LLVM ecosystem.

#include <nvl.h>
struct list {
int value;
nvl struct list *next;

};
void remove(int k) {

nvl_heap_t *heap
= nvl_open("foo.nvl");

nvl struct list *a
= nvl_get_root(heap, struct list);

#pragma nvl atomic
while (a->next != NULL) {

if (a->next->value == k)
a->next = a->next->next;

else
a = a->next;

}
nvl_close(heap);

}

J. Denny, S. Lee, and J.S. Vetter, “NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems,” in ACM High Performance Distributed Computing (HPDC). Kyoto: ACM, 2016

3636

Programming Model: Pointer types (like Coburn et al.)

NVM Heap A ("A.nvl")

NVM Heap B ("B.nvl")

Volatile Memory
(registers, stack, bss,

heap)

V-to-NV

intra-heap
NV-to-NV

NV-to-V

inter-heap
NV-to-NV

compile-time error

run-time error

avoids dangling pointers when
memory segments close

37

Programming Model: Transactions: MATMUL Example

#include <nvl.h>
void matmul(nvl float a[I][J],

nvl float b[I][K],
nvl float c[K][J],
nvl int *i)

{
for (; *i<I; ++*i) {

for (int j=0; j<J; ++j) {
float sum = 0.0;
for (int k=0; k<K; ++k)

sum += b[*i][k] * c[k][j];
a[*i][j] = sum;

}
}

}

• Store i in NVM

• Caller initializes *i to 0 when allocated

• To recover after failure, matmul
resumes at old *i

• Problem: failure might have occurred
before all of a[*i-1] became durable
in NVM due to buffering and caching

38

Programming Model: Transactions: MATMUL Example

#include <nvl.h>
void matmul(nvl float a[I][J],

nvl float b[I][K],
nvl float c[K][J],
nvl int *i)

{
while (*i<I) {

#pragma nvl atomic heap(heap)
{

for (int j=0; j<J; ++j) {
float sum = 0.0;
for (int k=0; k<K; ++k)
sum += b[*i][k] * c[k][j];

a[*i][j] = sum;
}
++*i;

}
}

}

• nvl atomic pragma specifies explicit
transaction that computes one row of a

• Transaction guarantees atomicity: both
*i is incremented and one row of a is
written durably, or neither

• Incomplete transaction rolled back after
failure

3939

Programming Scalable NVM with Papyrus

4040

Papyrus – Goals and Design

• Massive amounts of NVM in future systems
will enable distributed persistent data
structures – just say ‘no’ to I/O

• Papyrus is a novel programming system for
aggregate NVM in the next generation HPC
systems
– Parallel Aggregate Persistent - YRU - Storage
– Portable and scalable programming interface

• Private NVM & Shared NVM architectures
• No centralized control

– Papyrus Virtual File System
• Interfaces to standard POSIX API
• Allows for optimization on NVMe, Optane memory,

etc.
– Papyrus Template Container Library

• C++ template container implementations

*Wikipedia: Papyrus can
refer to a document
written on sheets of
papyrus, an early form of
a book.

[1] J. Kim, S. Lee, and J.S. Vetter, “PapyrusKV: a high-performance parallel key-value store for distributed NVM architectures,” in SC17.
[2] J. Kim, K. Sajjapongse, S. Lee, and J.S. Vetter, “Design and Implementation of Papyrus: Parallel Aggregate Persistent Storage,” in IPDPS 2017.

4141

PapyrusKV: A High-Performance Parallel Key-Value Store for Distributed
NVM Architectures

• Leverage emerging NVM technologies
– High performance
– High capacity
– Persistence property

• Designed for the next-generation DOE systems
– Portable across local NVM and dedicated NVM

architectures
– An embedded key-value store (no system-level

daemons and servers)
– Scalability and performance

• Designed for HPC applications
– MPI/UPC-interoperable
– Application customizability

• Memory consistency models (sequential and relaxed)
• Protection attributes (read-only, write-only, read-write)
• Load balancing

– Zero-copy workflow, asynchronous
checkpoint/restart

J. Kim, S. Lee, and J. S. Vetter, “PapyrusKV: A High-Performance Parallel Key-Value Store for Distributed NVM Architectures,”
In Proc. of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2017

PapyrusKV stores keys and values in arbitrary
byte arrays across multiple NVM devices

in a distribute system

PapyrusKV is portable across
local NVM and dedicated NVM architectures

42

PapyrusKV Example Get operations

Present design allows remote cache only for RO data.

4444

ECP Application Case Study 1
Meraculous (UPC)

• A parallel De Bruijin graph construction and traversal for De Novo
genome assembly
– ExaBiome, Exascale Solutions for Microbiome Analysis, LBNL

Graphic from ExaBiome: Exascale Solutions to Microbiome Analysis (LBNL, LANL, JGI), 2017

4545

NVM Implications

4646

Implications

1. Device and architecture trends will have major impacts on HPC in coming decade
1. NVM in HPC systems is real!
2. Entirely possible to have an Exabyte of NVM in upcoming systems!

2. Performance trends of system components will create new opportunities and challenges
1. Winners and losers

3. Sea of NVM allows/requires applications to operate differently
1. Sea of NVM will permit applications to run for weeks without doing I/O to external storage system
2. Applications will simply access local/remote NVM
3. Longer term productive I/O will be ‘occasionally’ written to Lustre, GPFS
4. Checkpointing (as we know it) will disappear

4. Requirements for system design will change
1. Increase in byte-addressable memory-like message sizes and frequencies
2. Reduced traditional IO demands
3. KV traffic could have considerable impact – need more applications evidence
4. Need changes to the operational mode of the system

4747

Recap

• Recent trends in extreme-scale HPC paint an
ambiguous future

• Complexity is the next major hurdle
– Heterogeneous compute
– Deep memory with NVM

• New software solutions
– Programming

• Memory
– DRAGON
– NVL-C
– Papyrus

• Heterogeneity
– OpenACC->FPGAs
– Clacc for LLVM

• These changes will have a substantial impact
on both software and application design

• Visit us
– We host interns and other visitors

year round

• Jobs in FTG
– Postdoctoral Research Associate in

Computer Science
– Software Engineer
– Computer Scientist
– Visit http://jobs.ornl.gov

• Contact me vetter@ornl.gov

http://jobs.ornl.gov/
mailto:vetter@ornl.gov

	Preparing for Extreme Heterogeneity in High Performance Computing
	Highlights
	The three technical areas in ECP have the necessary components to meet national goals
	ORNL 75th Lab Day and Summit Unveiling – 8 June 2018�#1 on Top 500
	ECP applications target national problems in 6 strategic areas
	Major Trends in Computing
	Contemporary devices are approaching fundamental limits
	Business climate reflects this uncertainty, cost, complexity, consolidation
	Sixth Wave of Computing
	Transition Period Predictions
	Architectural specialization is quickening
	Turing Award Lecture on June 4:�A New Golden Age for Computer Architecture
	Transition Period will be Disruptive
	HPC Architectures Reflect these Trends
	Department of Energy (DOE) Roadmap to Exascale Systems�An impressive, productive lineup of accelerated node systems supporting DOE’s mission
	Slide Number 19
	During this Sixth Wave transition, Complexity is our major challenge!
	Final Report on Workshop on Extreme Heterogeneity
	Emerging Memory Systems
	Memory Systems Started �Diversifying Several Years Ago
	Complexity in the Expanding and Diversifying Memory Hierarchy
	Many Memory Architecture Options under Consideration…
	NVRAM Technology Continues to Improve – Driven by Broad Market Forces
	Programming NVM Systems Portably
	NVM Design Choices
	NVM Opportunities in Applications
	Transparent Runtime Support for NVM �from GPUs
	DRAGON: API and Integration
	DRAGON Operations: Key Components
	Results with Caffe
	Language support for NVM:�NVL-C - extending C to support NVM
	NVL-C: Portable Programming for NVMM
	Programming Model: Pointer types (like Coburn et al.)
	Programming Model: Transactions: MATMUL Example
	Programming Model: Transactions: MATMUL Example
	Programming Scalable NVM with Papyrus
	Papyrus – Goals and Design
	PapyrusKV: A High-Performance Parallel Key-Value Store for Distributed NVM Architectures
	PapyrusKV Example Get operations
	ECP Application Case Study 1�Meraculous (UPC)
	NVM Implications
	Implications
	Recap

