Ab initio Molecular Dynamics with ORCA

Martin Brehm
Martin-Luther-Universität Halle–Wittenberg

https://brehm-research.de/
Why another AIMD code?

• There exist several dozen AIMD codes (*CP2k, CPMD, ...*)
• We do not want to get into competition with those.
• **Different focus:**
 • No plane waves, just Gaussian atom centered basis functions
 • No periodic boundary conditions
 • Huge variety of electron structure methods (*HF, DFT, Semiempirics, MP2, CASSCF, DMRG, MRCI, CCSD*)
 • QM/MM directly in ORCA (**no external code/driver**)
 • Semiempirics MD (*xTB or PM3*) is interesting for large systems
The ORCA MD Module

- Standard ORCA input files are **keyword-based** (*not scripts)*:

```plaintext
! MP2 RHF def2-TZVP TightSCF
%mp2
   MaxCore 100
end
%paras
   rCO = 1.20
   ACOH = 120
   rCH = 1.08
end
* int 0 1
   C 0 0 0 0.00 0.0 0.00
   O 1 0 0 {rCO} 0.0 0.00
   H 1 2 0 {rCH} {ACOH} 0.00
   H 1 2 3 {rCH} {ACOH} 180.00
* 
```
The ORCA MD Module

• Standard ORCA input files are **keyword-based** (not scripts):
• Specifying „MD“ in the simple input switches on the MD module.
• All input for the MD module is found within „%md ... end“

```
! MD BLYP D3 def2-SVP
%md
  initvel 300_K
timestep 0.5_fs
thermostat berendsen 300_K timecon 10.0_fs
dump position stride 1 filename "trajectory.xyz"
run 2000
end
* xyz 0 1
  O  -2.03740  -1.21799  -0.08342
  H  -1.06493  -1.04408  -0.02285
  H  -2.37327  -1.07034   0.83692
  O  -1.65042   1.84243   0.07893
  H  -0.72656   1.49786  -0.01029
  H  -2.07086   1.65422  -0.79801
*```

The ORCA MD Module

- Standard ORCA input files are **keyword-based** *(not scripts):*
- Specifying „MD“ in the simple input switches on the MD module.
- All input for the MD module is found within „%md ... end“

```plaintext
! MD BLYP D3 def2-SVP
%md
 initvel 300_K
timestep 0.5_fs
thermostat berendsen 300_K timecon 10.0_fs
dump position stride 1 filename "trajectory.xyz"
run 2000
end

* xyz 0 1
 O -2.03740 -1.21799 -0.08342
 H -1.06493 -1.04408 -0.02285
 H -2.37327 -1.07034 0.83692
 O -1.65042 1.84243 0.07893
 H -0.72656 1.49786 -0.01029
 H -2.07086 1.65422 -0.79801
*
```

This part is a **script** – it runs from top to bottom!
The ORCA MD Module

- While the overall ORCA input file is keyword-based, the MD input (inside "%md ... end") is a script which is executed during the ORCA run.

- The language of the MD input is **SANscript** *(which I am currently developing)*

https://brehm-research.de/sanscript
The ORCA MD Module

SANscript example program:

```plaintext
VAR tape : Character[]
pos, p : Integer
 a : String

a := "+++++++++[->++++++++<]>++.<++++[->++++<]>+++.<++[->+++<]>+++++.+.-.-.-.-.-.-.-.
++.-.++++.+-.-.-.-.-.-.-.-.-.++++[->-----<]>------------.-.-.";
pos := 0
p := 0
tape.resize 1
WHILE p < a.length DO
 IF a[p] = '[' THEN IF tape[pos] <> 0 THEN WHILE a[p] <> '[' DO p--; ENDIF
 ELSEIF a[p] = '+' THEN tape[pos]++
 ELSEIF a[p] = '-' THEN tape[pos]--
 ELSEIF a[p] = '.' THEN Print tape[pos]
 ELSEIF a[p] = '<' THEN pos--
 ELSEIF a[p] = '>' THEN pos++ IF pos >= tape.size THEN tape.add 0 ENDIF
ENDIF
 p++
ENDDO
```
The ORCA MD Module

SANscript example program:

It emulates a Turing machine!

→ Proof that SANscript is a Turing-complete language! 😊
The ORCA MD Module

How to run the example? SANscript interpreter is not yet available...
The ORCA MD Module

How to run the example? SANscript interpreter is not yet available...

! MD
%md
$verbose execute 1$  # reduce printlevel
VAR tape : Character[
   pos, p : Integer
   a : String

   ++.<+++++[->--------]<--------.<++++[->-----]<-.++++[->++++<]+++--------+.
   ++++.++++--------+++.-+++.++++.<+++++[->--------]<----------.-<"

   pos := 0
   p := 0
   tape.resize 1

   WHILE p < a.length DO
      IF       a[p] = ']' THEN IF tape[pos] <> 0 THEN WHILE a[p] <> '[' DO p
      ELSEIF a[p] = '+' THEN tape[pos]++
      ELSEIF a[p] = '-' THEN tape[pos]--
      ELSEIF a[p] = '.' THEN Print tape[pos]
      ELSEIF a[p] = '<' THEN pos--
      ELSEIF a[p] = '>' THEN pos++ IF pos >= tape.size THEN tape.add 0 ENDIF
      ENDIF
      p++
   ENDDO
end

* xyz 0 1
Ar 0.0 0.0 0.0
*

Just run it in ORCA 😊
The ORCA MD Module

There is now a Turing-complete scripting language inside ORCA

→ In theory, you can solve any computational problem with ORCA 😊

The SANscript language is still in development, but standard MD runs already work reliably.

Later, you will be able to have loops / branches / etc. in your MD input, allowing for complicated protocols.

```plaintext
! MD BLYP D3 def2-SVP
%md
 initvel 300_K
timestep 0.5_fs
 thermostat berendsen 300_K timecon 10.0_fs
dump position stride 1 filename "trajectory.xyz"
run 2000
end
* xyz 0 1
 ...
* }
```
Implemented Features  *(ORCA 4.2.1)*

- AIMD with many different electron structure methods (*HF, DFT, MP2, Semiempirics, xTB, CASSCF, ...*)
- Trajectory output in **XYZ, PDB, DCD format**
- **Restart ability** to continue MD runs
- Simple **thermostats** (*Berendsen*)
- Keeping track of **energy drift** / conserved quantity
- Optional **repulsive walls** (*rectangular, elliptical, etc.*)
- **Constraints** (*distances / angles / dihedrals / centers of mass*)
- ORCA-internal **QM/MM** simulations
- **Region features** (*different thermostats for different parts of the system, etc.*)
- Cartesian **L-BFGS optimizer** for very large systems (*10000s of atoms*)
Planned Features

- **More sophisticated thermostats**  
  *(Nose-Hoover-Chains? CSVR?)*

- **Restraints**  *(currently only constraints implemented)*

- **Metadynamics**  *(free energy sampling)*  
  → e.g. accurate prediction of $pK_A$ values

- **Calculation of properties** along trajectories

- **Vibrational spectra from AIMD**  *(IR, Raman, VCD, ROA)*  
  → many anharmonicities and full solvent influence!
Manual

There is a chapter on the MD module in the ORCA manual (sec. 9.34, "Detailed Input -> Ab initio Molecular Dynamics Simulations").

There, you find a list of commands with description of all the options.

The manual of the MD module can also be found on my homepage:

https://brehm-research.de/orcamd

A library of input examples will be created in the future.

If you have questions, write a post in the ORCA forum! (others might have same question; will be interested in answer)