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The Virtual Chemistry Lab
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The Virtual Chemistry Lab

‘

,IThe most important hypothesis in
all of biology, chemistry and physics
is that everything is made of atoms,
and that everything living things do
can be understood in terms of the

jigglings and wigglings of atoms"



The Virtual Chemistry Lab
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Quantum mechanical description is essential



The Virtual Chemistry Lab

Dynamics is indispensable



The Virtual Chemistry Lab

Dynamics & QM on large length and time scales



Schrodinger Equation

Brwin Schrodinger
*12.VIIl . 188% + 4.1.136]

RAnnemariec Schrsdinger
* 31.X11.1896 + 3 X.I1365
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Schrodinger Equation

... hence 1t would be desirable to develop
practical approximation schemes for the
application of quantum mechanics"



Born-Oppenheimer
H(r, R)¥(r,R) = EV¥(r,R), mit

H(I‘ R) 1. —|—TK—|‘Vee —|—V€KI'R ‘|‘VKK

M; ~ 1836m. {-} |_‘._,



Born-Oppenheimer

H(r,R) = He(r; R) + Hi(R) & Vi, x(R) >> Vg ¢(r; R)

He(ri R)p(ri R) _ . Hx(R)X(R)
(r; R) X(R)

= ¢(R)

He(r; R)Y(r; R) = e(R)Y(r; R)

Hr(R) +e(R) x(R) = Ex(R)



Born-Oppenheimer

H(r,R) = He(r; R) + Hi(R) & Vi, x(R) >> Vg ¢(r; R)

He(ri R)Y(riR) _ . Hr(R)x(R)
(r; R) X(R)

= ¢(R)

e(R) + Vi (R) ~ 3 v1(Rr) + 22,y v2(Rr, Ry) + ...

MiR; = —Vg, [e(R) + Vkk(R)]



Nuclei

Born-Oppenheimer

Electrons

Molecular Dynamics
(MD)

Ab-Initio MD
(AIMD)

Path-Integral MD
(PIMD)

Ab-Initio PIMD
(PI-AIMD)

Classical

Quantum Mechanical

[BI1SSB[)
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Electrons

: @
\  Ab-Initio MD 3
(AIMD) 5
5 5,
-

2
Path-Integral MD |  Ab-Initio PIMD | 2
(PIMD) (AL-PIMD) _
2
=

Classical Quantum Mechanical

8(R) -+ VKK(R) X ZI Ul(RI) + ZI<J UQ(R[,RJ) + ...

MiR; = —Vg, [e(R) + Vkk(R)]



Molecular Dynamics

"for the development of Winners of Nobel Prize in
Chemistry 2013

multiscale models for complex
chemical systems".

e protein folding,
catalysis,
electron transfer,
drug design

° Martin Karplus Michael Levitt Arieh Warshel

Alder, B. J. and Wainwright, T. E. J. Chem. Phys. 27, 1208 (1957)

Alder, B. J. and Wainwright, T. E. J. Chem. Phys. 31, 459 (1959)

Rahman, A. Phys. Rev. A136, 405 (1964)

Stillinger, F. H. and Rahman, A. J. Chem. Phys. 60, 1545 (1974)

McCammon, J. A., Gelin, B. R., and Karplus, M. Nature (Lond.) 267, 585 (1977)
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What MD is NOT!




The Essence of MD
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The Essence of MD

Energy
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The Essence of MD
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Energy

Internuclear Separation (r)



The Essence of MD

A

Energy

Internuclear Separation (r)



Boltzmann Distribution

Tuo minime cory i Avew gives: ﬁ(bdnilii:ﬂ
I to states A and B I of state A or B
C 5
p

_ )
P(x)=e %87 /Z
e U(x): Potential energy of a system at position x
_—U(w) o, e .
« Z = Z e kBT : Partition function, so thatz P(:U) =1
xXr xXr



Relative Probability

_U=)
e The calculation of Z2 = Z e kBT however, is very demanding!
xr

e Analytic determination of Z is generally impossible!
e Fivaluating Z at random points is not accurate enough!
e Approximating Z at nuclear ground-state only valid for T=0 K!

e Calculation of P(x) by MD/MC requires unlimited computer time!

e Computing rel. pl“Obagl(lmlﬁ)Y 1S easy: I Tuo points at x; and ¥
U(x e
(:ch) L -
P(CIZJ) — ¢ TEpT /Z P,
P(SIZ'Z) _ - U(wi;;;f(%’j) ‘

P(z;)



The Essence of MD
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Energy

Internuclear Separation (r)



The Essence of MD

A

Energy

Internuclear Separation (r)



Monte C arlo
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Monte Carlo

“FERMIAC” or “"FERMI'S TROLLEY"

LOS ALAMOS  SCHINTIFIC LABORATORY
ENGIiNITInING SErAR I mENT

NG PL-




Importance Sampling

e Till now we were selecting our configurations from a uniform

distribution and weight the configurations a posteriori by means

of the relative Boltzmann probability P(x;)
P(z;)

e Instead, we would like to sample a prior: from the Boltzmann

U(z)—Ul(z;)
e ky T

distribution and weight the configurations equally, i.e.

_U=)
p(x) o« e *BT
| L
A = Jim 13w

* But how?” Since knowing the whole ,0(33 ) corresponds to know Z!



Metropolis Monte Carlo

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER ¢ JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicHorLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AucustAa H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpwArD TELLER,* Depariment of Physics, University of Chicage, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION II. THE GENERAL METHOD FOR AN ARBITRARY

) ] ] POTENTIAL BETWEEN THE PARTICLES
HE purpose of this paper is to describe a general

method, suitable for fast electronic computing In order to reduce the problem to a feasible size for
machines, of calculating the properties of any substance | numer ical work, we can, of course, consider only a finite
which may be considered as composed of interacting number of particles. This number.N may be as high as
individual molecules. Classical statistics is assumed,/ Several hundred. OQur system consists of a squaref con-

mr 1 -




Monte Carlo & MANIAC

30



Monte Carlo & MANIAC

Now, Teller was not one to let Fermi leave
him behind. Anything Fermi could do, he
could do too. So Teller also became a
student of Nick’s and learned how to pro-
gram the MANIAC. When he came back
to Chicago—he was on the faculty
then—not to be outdone by Fermi he an-
nounced that he would give a colloquium
on the subject of computers. But when the
colloquium notice appeared, it didn’t con-
vey exactly the impression he had in-
tended. It read,

Edward Teller
The MANIAC

31



What we are interested in?

® Thermodynamic ensemble properties: , ..

Function Hamlltoman
Static equilibrium properties: JdBNR/d?’Np kBT A(p, R)
Dynamic properties:(A(0)B(t)) = ;/d3NR d3N e~ M/EBT A(p (0))B(p(t), R(t))
R2

Ri

Energy



What we are interested in?

® Thermodynamic ensemble properties:

Partition
Function Hamlltonlan
Static equilibrium properties: Jd?’NR/d?’Np e kBT A(p, R)
Dynamic properties:(A(0)B(t)) = ;/d‘?NR d3N e H/EBT A(p 0))B(p(t), R(t))
R>

Ri

Energy



What we are interested in?

® Ergodic hypothesis: ensemble average equal to time average
<A> _ %/d3NR/d3Np e_H/kBTA(p, R)

(AOB®) = [ VR [ @p e T Ap(0), RO) B0, R(D)

R

Ri

Energy



What we are interested in?

® Ergodic hypothesis: ensemble average equal to time average

T
)= 7 [ A, R

T
(AO)B() = /O dt A()B(t + 1)

Ri




Molecular Dynamics

Time evolution of a classical many-body system in a potential

L(R,R)=T(R)-V(R) = —ZMIRI O({R/})

Euler-Lagrange equation

d oL 0L
dt 8R[ - OR;
Equation of motion
. o
MB, — ~02({R;}) _F

OR;



Molecular Dynamics

PHYSICAL REVIEW VOLUME 136, NUMBER 2A 19 OCTOBER 1964

Correlations in the Motion of Atoms in Liquid Argon*

A. RaaMAN
Argonne National Laboratory, Argonne, Illinois
(Received 6 May 1964)

A system of 864 particles interacting with a Lennard-Jones potential and obeying classical equations of
motion has been studied on a digital computer (CDC 3600) to simulate molecular dynamics in liquid argon

= = e ]
- - M - w
i K] I . i “e»if0 1 ’;\t ok
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Integrating Newton’s EOM

(Ri, p1)

(R3, p3)

|. Assign initial R (position) and p (momenta)

(R2, p2)

o



Integrating Newton’s EOM

(R, p1)

(R3, p3)

(R2, p2) |. Assign initial R (position) and p (momenta)

U 2. Evolve (numerically) Newton’s equation of
motion for a finite time increment

H(R,p) = Z I + V(R)

Potential




Integrating Newton’s EOM

(R1, p1)

(R3, p3)

(Ry, p2) |. Assign initial R (position) and p (momenta)

U 2. Evolve (numerically) Newton’s equation of
motion for a finite time increment

H(R,p) = Z I + V(R)

Potential

(Ri(t+dt), pi(t+dt))

(Rz(t+dt),
pz(t+dt))/‘u 3.Assign new position and momenta

(R3(t+dt), p3(t+dt))




Integrating Newton’s EOM

(Ri, p1)

(R3, p3)

|. Assign initial R (position) and p (momenta)

2. Evolve (numerically) Newton’s equation of '\
motion for a finite time increment

(R2, p2)

o

H(R,p) = Z P +V(R)

Potential

(Ri(t+dt), pi(t+dt))

(Ra(t+dt),
Pz(t+dt))/&u 3.Assign new position and momenta

(R3(t+dt), p3(tt+dt))




Fuler’s Algorithm

* First shot: Taylor expansion of R

Force Error O(At3)

t . A
R+ 80 = R0+ 2080 @O0 5y B0 oty



Fuler’s Algorithm

* First shot: Taylor expansion of R

Force Error O(At®)
L A 4

t
R(t+ At) = R(t) + Z%At +At2 +HRy Ot

e Simple truncation of the Taylor expansion is a bad idea
e The naive ,forward Euler* algorithm is

* not time reversible

* does not conserve phase space volume

e does not conserve energy

e Use Verlet’s algorithm instead



Verlet’s Algorithm

* First shot: Taylor expansion of R

Force

t o AL
R(t + At) = R(t) + ZL)At +At2 - R(t)g—f + O(Ath)

m
' .. AL
R(t - at) = R(t) - P ar+ PO A ) 28 4 o(art) 4
m 2m 3!
p(t)
R(t+ At) + R(t = At) = 2R(1) + 22 A +Q(A Dy
R(t + At) ~ 2R(t) — R(t — At) + PE) Ap2
m
Verlet Algorithm

“Verlet” is also symplectic: conserves dpAdR and the form of
Hamilton’s equations



Velocity-Verlet Algorithm

. At?
R[(t -+ At) = R[(t) + At X R[(t) + —F[(t)
2M 7
Calculate F;(t + At)
: : At
R;(t+ At) = R;(t) + ST [F;(t) + Fr(t + At)]
I

@ Simple and efficient: Only F}(t¢), no higher derivatives required
@ Explicitly time reversible
@ Symplectic, i.e. conserves phase space volume

Excellent long time stability = Energy conservation



Lyapunov Instability

@ It’s impossible to determine initial conditions: AR x AP ~ h
@ Finite numerical accuracy of the integrator as well as ¢(R)

@ Even worse: The Lyapunov instability
R(t) — R'(t)] ~ex e
suggests an exponential dependence on them

@ l.e. even knowing ®(R) exactly still causes an e divergence

Neither possible nor desirable to calculate exact trajectories



Molecular Dynamics

* Microcanonical (NVE) ensemble: Number of particles,Volume,
and total Energy are conserved

e Natural ensemble to simulate molecular dynamics (follows
directly from Hamilton’s equation of motion



Molecular Dynamics

* Microcanonical (NVE) ensemble: Number of particles,Volume,
and total Energy are conserved

e Natural ensemble to simulate molecular dynamics (follows
directly from Hamilton’s equation of motion

e Canonical (NVT) ensemble: Number of particles,Volume, and
Temperature are conserved

e System in contact with a heat bath (discussed later on)



The Canonical Ensemble

e The idea: couple the system to a thermostat (heat bath)
e Interesting because:
e Experiments are usually done at constant temperature

e Better modeling of conformational changes

Energy is
conserved

Energy is
not conserved




Maxwell Distribution

Probability distribution of the kinetic energy:
P(Ekin) o< exp(—Egin/kpT)

I ! I !
Maxwell-Boltzmann-Distribution

< <7

kinetic
energy: p*/2M

_ 2 E/
_ | (=2

Probability (a.u.)

# of particles

| | I |
Kinetic Energy (a.u.)




Thermostats: First Ideas

® Temperature rescaling: Berendsen “thermostat”

® Rescale velocities by a factor containing the ratio of target and
instant temperature

® Does not sample the canonical ensemble (wrong temperature
distribution)

® “Flying ice-cube” effect: rotations and translations acquire high Exi,

and vibrations are frozen
H.].C.Berendsen, et dl. |. Chem. Phys. 81 3684 (1984)



Thermostats: First Ideas

® Temperature rescaling: Berendsen “thermostat”

Rescale velocities by a factor containing the ratio of target and
instant temperature

Does not sample the canonical ensemble (wrong temperature
distribution)

“Flying ice-cube” effect: rotations and translations acquire high Exi,

and vibrations are frozen
H.].C.Berendsen, et dl. |. Chem. Phys. 81 3684 (1984)

® Simple stochastic idea: Andersen thermostat

At each n' time-step, replace velocity of a random particle by one
drawn from a Maxwell-Boltzmann distribution at target
temperature

Not very efficient, no conserved quantity

Very sensitive on n H. C.Andersen, |. Chem. Phys. 72,2384 (1980)



Stochastic Velocity Rescaling

G. Bussi, D. Donadio, and M. Parrinello, . Chem. Phys. 126,014101 (2007).

Combine concepts from velocity rescaling (fast!) with
concepts from stochastic thermostats (accurate!)

Target temperature follows a stochastic differential equation:

Temperature White noise
rescaling



Stochastic Velocity Rescaling

G. Bussi, D. Donadio, and M. Parrinello, |. Chem. Phys. 126,014101 (2007).

Combine concepts from velocity rescaling (fast!) with
concepts from stochastic thermostats (accurate!)

Target temperature follows a stochastic differential equation:

Temperature White noise
rescaling

® Very successful thermostat, weakly dependent on relaxation time T

® Pseudo-Hamiltonian is conserved

Bussi, Parrinello, Phys. Rev. E 75,056707 (2007)



Newton vs. Langevin

Heavy(er) body in a solvent (or gas)

Newtonian dynamics Langevin dynamics

O O

Fr=—-VR,V Fr=
friction random

force



Newton vs. Langevin

Heavy(er) body in a solvent (or gas)

Newtonian dynamics Langevin dynamics

O O

Fr=—-VR,V Fr=
friction random

force

® In thermal equilibrium, drag of the friction and kicks of the random
noise balance each other - Fluctuation Dissipation Theorem (FDT)

(&(1)€(0)) = 2kpT~o(t)

No memory of past times
No frequency dependence (white noise)



Langevin Thermostat

S.A.Adelman and J. D. Doll, J. Chem. Phys. 64,2375 (1976).

Model dynamics via the Langevin equation:

R0

Original system Friction and White Noise

(&(1)€(0)) = 2kpT0(1)



Langevin Thermostat

S.A.Adelman and J. D. Doll, J. Chem. Phys. 64,2375 (1976).

Model dynamics via the Langevin equation:

R0

Original system Friction and White Noise

(&(1)€(0)) = 2kpT0(1)

® Sensitive on Y

® For systems spanning a wide range of frequencies, how to
achieve the “best” critical damping?

® Disturbs dynamics considerably



Molecular Dynamics

* Microcanonical (NVE) ensemble: Number of particles, Volume,
and total Energy are conserved

e Natural ensemble to simulate molecular dynamics (follows
directly from Hamilton’s equation of motion

e Canonical (NVT) ensemble: Number of particles,Volume, and
Temperature are conserved

* System in contact with a heat bath (discussed later on)

* |sothermic-lIsobaric (NPT) ensemble: Number of particles,
Pressure, and Temperature are conserved



Isobaric-Isothermic MD

® Definition of instantaneous pressure:

2
) = = ZRW (Vr,,U) = V@)

P = (Ekln —
Stress Tensor

[1]

3V

® Similar schemes as thermostats. pressure rescaling, extended

Lagrangian, stochastic pressure rescaling

Parinello and Rahman, . Appl. Phys 52, 7182 (1981);
Bussi, Zykova-Timan, Parrinello, . Chem. Phys. 130,074101 (2009)

® Use thermostat together with a barostat to control pressure
and temperature




Molecular Dynamics

* Microcanonical (NVE) ensemble: Number of particles, Volume,
and total Energy are conserved

* Natural ensemble to simulate molecular dynamics (follows
directly from Hamilton’s equation of motion

e Canonical (NVT) ensemble: Number of particles,Volume, and
Temperature are conserved

* System in contact with a heat bath (discussed later on)

* |sothermic-lIsobaric (NPT) ensemble: Number of particles,
Pressure, and Temperature are conserved

“Computer experiment’: equilibrate system and measure



Nuclei

Electrons

Molecular Dynamics

— —

Ab-Tnitio MD ™\

(MD) AIMD
Path-Integral MD Ab-Initio PIMD
(PIMD) (AI-PIMD)
Classical Quantum Mechanical

He(r; R)Y(r; R) = e(R)Y(r; R)

MiR; = —Vg, [e(R) + Vkk(R)]

[BIISSB[)

YOOI\ Wnjuen()



Born-Oppenheimer MD

®(R) = EQS' [{#i}; R] + Err(R) = E[{¢}; R]
Born-Oppenheimer Lagrangian
N
: 1 .y .
Leo({vis R.R) = -} MRj-min E[{¢:};R]
I=1 {wi} {{ilvj)=bi;}
The forces are obtained by solving the Euler-Lagrange equation

d oL oL



Born-Oppenheimer MD

MiR; = -Vg, |min E[{¢;}; Rf] }
i} {(Wil;)=0:;}
OF %,
= —0 Nij == (1

If and only if (¢;| is an eigenfunction, then

OF 0
MIRI__(‘?—R[ g Azga—m<wz ‘¢J>
©,J

However, in general the HF-Theorem can not be assumed



Born-Oppenheimer MD

0.1 ; :

0.07 |

0001 |
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Largest element of electronic gradient

May be good enough to optimize the geometry, but not for AIMD



Born-Oppenheimer MD

BOMD: C,H,

| I

B | | | | 1 | | I
0.05 - —
L “not so” accurate N

|

V
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S g
[ |
I I

<
-
o
|
l

Total energy [e
-
" T T | ) T 17T T T 1T

O
=
l
1

accurate

0.05 0.1 0.15
Time [ps]
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Born-Oppenheimer MD

@ Large integration time steps
@ Potential energy on the BO surface
@ EXxpensive optimization of the WF required

@ \ery stringent SCF convergence requirement

However: >> 10° electronic structure calculations are required



Car-Parrinello MD

ICTP Photo Archives




Car-Parrinello MD

N
Lep ({1} R R) = %M Z@M@M + % ZMIR%
i =1

— E[{s:}; R] + Z%((%Wﬂ — 9ij)

d oL  oc

dt 9)R; OR;

\. f i oL  oc
 1985These / p dt ol O]

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)



Car-Parrinello MD

‘

M/R; = —VRg,

E{¢:}; R ‘ }
{(Yilv;)=0di;}

Fd
ri

1985 Trieste / 7

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)



Car-Parrinello MD

Beside that it circumvent the SCF cycle, what is so clever about it?

@ If i is sufficiently small, the electrons adiabatically follow the ions

@ In this case the metastable state can be sustained and v); ~ 0

W} izl ZAZM

@ l.e. on ionic timescales the electron oscillations averages out
= (15| is an eigenfunction of HSF, thus the HF-Theorem holds

@ Energies & Forces are NOT on the BO surface, but are consistent

d  dMep
o Ao+ 330 1 b = 2 o



Car-Parrinello MD

Vibrational spectra of electrons and ions do not overlap

) r ' 1 | l ) | 1 I L} ) |l

20 [~ . -

Lol z
< TV M

0 2000 4000 6000 8000
@ (THz)
Triangle = highest ionic frequency

v(w) (arb. units)




Car-Parrinello MD

Vacancy in a hot 64-atom Si cell

0.08 1400
0.08

1300

0.04 1200

K, (hartree)

0.02 1100

0.00 L A 1 L L1 1000

time (10* atu)



Car-Parrinello MD

64 atoms of molten aluminum
@ (a): Without thermostat
@ (b): With thermostat

0.16 T I I I

012

V¥ (ev)

L pl
-
H

0 02 04 06 08 10
t (psec)



Car-Parrinello MD

Principal task of : Coupling between R; and );

[Yu(r,t) —o(r,t)| < CVp

(L
At max
ax \/ AE,.,

@ . acts as a continuous slider between speed and accuracy

@ Typically, the timestep is ~ 5 x —10x smaller than in BOMD

@ Depends on the application if either CPMD or BOMD is to favor

@ Metals are problematic: Finite electron temperature or thermostats

Desirable to eliminate u!



BOMD vs. CPMD

BOMD CPMD
Energy Conservation fair
Iterative Optimization yes
Exactly on the BO-Surface no
Integration time-step small
Metals and small band-gap difficult




Second-Generation CPMD

M;R; —V R, |min E[{@bi};Rﬂ

_{wi I {{¥ilj)=0i;}
OF 9,
= TR, ;Aija—mWM%)
O(h;| | OE[{ti}; Ry]
- 2; OR; O] _;AMW

T. D. Kiihne, WIREs Comput. Mol. Sci. 4, 391 (2014)



Second-Generation CPMD

MiR; = —Vg, |min E[{¢s}; R/
| 1vit {{¥ilj)=0i;}
OF %
=~ 3R, ;Aija—m<¢z|¢j>
O] [{w@} R
- QZ OR; ZAUWJ
d? OF
gliir ) = =5 Yl 7) +ZAU|% (r.7))

T. D. Kiihne and E. Prodan, Annals of Physics 391, 120 (2018)



Second-Generation CPMD

0.2 l |
My ﬁ“f = F IBO — ““f‘DﬂffRf + E:P

h VFC' ; 0.15|- |

- Fj’ + EI ~

3
® ol _

(EP(0)EP(t)) = 29p MikpTo(t) | ¥
0.05 |

Las. 22\ _ 37,
(AMi B3 = ST

" 2 21:5. 30 35

T. D. Kiihne, M. Krack, F. Mohamed and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)



econd-Generation C

Energy [Hartree]

Mean force deviation [a.u.]

T. D. Kiithne, M. Krack, F. Mohamed and M. Parrinello, Phys.

-864.8

865 [4/'

-865.2

-865.4

0.0002

0.0001

-0.0001

-0.0002

I L} I L) l L) l L}
—— BOMD reference
1 corrector step

—— Instantaneous mean force deviation
Average mean force deviation

200 400 600 800

Time [fs]

1000

Rev. Lett. 98, 066401 (2007)



econd-Generation C

T. D. Kiihne, M. Krack, F. Mohamed and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)

r[A] r[A]
0 5 10 150 5 10
| ' | ' . | ' |
B —— BOMD reference { |-S-0 —— BOMD reference
- - —- Second-generation CPMD | _| | - —-- Second generation CPMD
- J 1000 Si (liquid) 4 — 216 SiO2 (liquid)
! I . L
| ' | J | i |
B 0-0 —— BOMD reference 1 Si-Si —— BOMD reference
i - —- Second generation CPMD | | - —- Second generation CPMD
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,On-the-fly* Spectroscopy

wy,(r—R) = Y / dk e R Z U)K (1)

(2m)°

vvvvvvvv

AAAAAAAAA

Time (ps) wave number {em™)

P. Partovi-Azar and T. D. Kiihne, J. Comp. Chem. 36, 2188 (2015)



Nuclei

8(R) -+ VKK(R) X ZI Ul(RI) + ZI<J UQ(R[,RJ) + ...

Electrons

Molecular Dynamics Ab-Initio MD
(MD) (AIMD)
Path-Integral MD\| Ab-Initio PIMD
~ (PTMD) (AI-PIMD)

Classical

Quantum Mechanical

Hr(R) +e(R) x(R) = Ex(R)
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Importance of NQE

® (lassically the average value of the kinetic energy follows equipartition
(Boltzmann operator factorizes) and is given by

3NkgT
2

® |n quantum mechanics, Boltzmann operator does not factorize (because

momentum and position do not commute). E.g. for a system of harmonic

(Y=

oscillators: ,
rhm m Z coth Bk, mass
qm _lm QW dependence
pH of ISOTOPICOHY pur‘e wafer
Classical water 85 e
would be quite deadly!™ 8.25 «~classical’ water
8. e |
T 7.75 e :
| %
7.5 L ¥
7.25 G RS
i3 ‘4
“Hz0 3H,0 °H,0 !H;0



Path-Integral MD

Z=Tr[e#) = T [(e#)"], mit 5, = 2

= lim,, o0 (535) [ d"q [d"p e Pnn mit

p? () M | 2 | |
N T .
S G e () R ) e v (R, R)
WL ~ ~ _ « — 5
El(cjz)n Harmonic springs between beads Ve(iz)g
Particle 5

——— Particle f

e

(2)
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Path-Integral MD

* Radius of gyration — the spread in imaginary time. For a tree particle the root mean square
A(T) h
1/2 _
()2 = A(T) =
V& V2mmkgT

De Broglie Wavelength ot the particle.

radius of gyration is: 5

* Bead to bead

distance. For a free * Centroid: The centre

particle the average 1s: _ of the polymer.

ph”

nm

==

Note: distance between
beads decreases as number
of beads increases.



Ring-Polymer MD

Path Integral MD uses ring polymer trajectories to estimate static
averages of the form:

1 -
(4) = —Tx[e™PH 4]

However, many important quantities are given by dynamic averages:

Time correlation function
cap(t) = Trle PHA(0)B(t)]

Diffusion coefficient IR spectrum (dipole adsorption cross section)
- L[> o . Tw — Bhw /v
D(T) = iﬁ Cy.v(t) dt n(w)a(w) = SheV eo (1—e7")Cph.pu(w)

velocity

1 [~ _,
Cpp(w) = — / e e, (t)dt
2T J oo \dipole

PIMD does NOT give access to real time propagation (momenta are
fictitious)



Nuclei

Electrons

Molecular Dynamics
(MD)

Ab-Initio MD
(AIMD)

Path-Integral MD
(PIMD)

/Ab-Tnitio PTMD\
(AL-PTMD)

——
S

Classical

Quantum Mechanical

He(r; R)Y(r; R) = e(R)Y(r; R)

Hr(R) +e(R) x(R) = Ex(R)
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Ring Polymer Contraction
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Ring Polymer Contraction

Jhw =5 at 300 K

AN

0 1000 2000 3000 4000
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Ring Polymer Contraction

Bhw = 5 at 300 K Bhw = 20 at 300 K

(n > 5H) (n > 20)

Vinter 18 “soft” Viiten 18 “hard”

0 1000 2000 3000 4000
m[cnfﬁ



Ring Polymer Contraction

(ete.)
Ring polymer contraction:
Wig = 81’1",/;3.&
qj wyg ~ 67 /Bh
A .
FLls N
N 4 T
l'\". ‘_‘. . wigﬁilﬁfﬁﬁ
L R —
“- -8 ﬁ': <
"*'. /.1\ I’q\ ;:. bl = Z?rf.ah
1 [ ] @
&
Wp = 0
Z V :l:m-r ':.q_.i' '
Jj=1
e — —— - - ———

T. E. Markland and D. E. Manolopoulos, J. Chem. Phys. 129, 024105 (2008)



Ring Polymer Contraction

(ete.)
Ring polymer contraction:
W == Sﬂfﬁﬁ
q; wyg ~ 6w /Bh
AP
ey’ ‘
. i 4
L ]
o’ .
. -
by ‘
¢ -0 «-4
“ - [ 1 ’% -ﬁ.

e — - - - e
T. E. Markland and D. E. Manolopoulos, J. Chem. Phys. 129, 024105 (2008)



Ring Polymer Contraction

(ete.)

Ring polymer contraction:

Wwigq = Sﬂfﬁﬁ

qj wyg =~ 67 /Gh

e —— = - o r———————
T. E. Markland and D. E. Manolopoulos, J. Chem. Phys. 129, 024105 (2008)



Quantum-RPC
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C. John, T. Spura, S. Habershon and T. D. Kiihne, Phys. Rev. E 93, 043305 (2016)



Coupled Cluster-RPMD

.0
>

T. Spura, H. Elgabarty and T. D. Kiihne, Phys. Chem. Chem. Phys. 17, 14355 (2015)



Coupled Cluster-RPMD

P(rou)

T T

CC-MD, full PCF
CC-MD, O-H
CC-MD, O--H*
CC-PIMD, full PCF
CC-PIMD, O-H

CC-PIMD, O--H*
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T. Spura, H. Elgabarty and T. D. Kiihne, Phys. Chem. Chem. Phys. 17, 14355 (2015)




Water: Quo Vadis DFT"

T T T T T T T T T T
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C. John, T. Spura, S. Habershon and T. D. Kiihne, Phys. Rev. E 93, 043305 (2016)






