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„The most important hypothesis in 
all of biology, chemistry and physics 
is that everything is made of atoms, 
and that everything living things do 
can be understood in terms of the 
jigglings and wigglings of atoms“
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Quantum mechanical description is essential
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Dynamics is indispensable
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Dynamics & QM on large length and time scales

The Virtual Chemistry Lab 



Schrödinger Equation



Schrödinger Equation

„... hence it would be desirable to develop 
practical approximation schemes for the 

application of quantum mechanics“



Born-Oppenheimer

Ψ(r,R) ≈ ψ(r;R)χ(R)

H(r,R) = Te + TK + Vee(r) + VeK(r,R) + VKK(R)

MI ≈ 1836me

H(r,R)Ψ(r,R) = EΨ(r,R),mit



Born-Oppenheimer

He(r;R)ψ(r;R)

ψ(r;R)
= E −

HK(R)χ(R)

χ(R)
= ε(R)

H(r,R) = He(r;R) +HK(R) & ∇2

RI
χ(R) >> ∇2

RI
ψ(r;R)

[HK(R) + ε(R)]χ(R) = Eχ(R)

He(r;R)ψ(r;R) = ε(R)ψ(r;R)
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Boltzmann Distribution

• Absolute probability P of a system to be in position x: 

• U(x): Potential energy of a system at position x 
•                       : Partition function, so that

P (x) = e
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Relative Probability

• Computing rel. probability is easy:

P (xi) = e
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• The calculation of                        however, is very demanding! 

• Analytic determination of Z is generally impossible! 
• Evaluating Z at random points is not accurate enough! 
• Approximating Z at nuclear ground-state only valid for T=0 K! 
• Calculation of P(x) by MD/MC requires unlimited computer time!
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Monte Carlo

staff members made their pilgrimages to
ENIAC to run Monte Carlo problems.
These included J. Calkin, C. Evans, and
F. Evans, who studied a thermonuclear
problem using a cylindrical model as well
as the simpler spherical one. B. Suydam
and R. Stark tested the concept of artifi-
cial viscosity on time-dependent shocks;
they also, for the first time, tested and
found satisfactory an approach to hydro-
dynamics using a realistic equation of
state in spherical geometry. Also, the dis-
tinguished (and mysterious) mathemati-
cian C. J. Everett was taking an inter-
est in Monte Carlo that would culminate
in a series of outstanding publications in
collaboration with E. Cashwell. Mean-
while, Richtmyer was very actively run-
ning Monte Carlo problems on the so-
called SSEC during its brief existence at
IBM in New York.

In many ways, as one looks back, it
was among the best of times.

Rapid Growth. Applications discussed
in the literature were many and varied
and spread quickly. By midyear 1949 a

symposium on the Monte Carlo method,
sponsored by the Rand Corporation, the
National Bureau of Standards, and the
Oak Ridge Laboratory, was held in Los
Angeles. Later, a second symposium was
organized by members of the Statistical
Laboratory at the University of Florida in
Gainesville.

In early 1952a new computer, the MA-
NIAC, became operational at Los Ala-
mos. Soon after Anthony Turkevich led
a study of the nuclear cascades that result
when an accelerated particle collides with
a nucleus. The incoming particle strikes
a nucleon, experiencing either an elastic
or an inelastic scattering, with the latter
event producing a pion. In this study par-
ticles and their subsequent collisions were
followed until all particles either escaped
from the nucleus or their energy dropped
below some threshold value. The “exper-
iment” was repeated until sufficient statis-
tics were accumulated. A whole series of
target nuclei and incoming particle ener-
gies was examined.

Another computational problem run on
the MANIAC was a study of equations

THE FERMIAC

The Monte Carlo trolley, or FERMIAC, was
invented by Enrico Fermi and constructed
by Percy King. The drums on the trolley
were set according to the material being tra-
versed and a random choice between fast
and slow neutrons. Another random digit
was used to determine the direction of mo-
tion, and a third was selected to give the dis-
tance to the next collision. The trolley was
then operated by moving it across a two-
dimensional scale drawing of the nuclear
device or reactor assembly being studied.
The trolley drew a path as it rolled, stopping
for changes in drum settings whenever a
material boundary was crossed. This infant
computer was used for about two years to
determine, among other things, the change
in neutron population with time in numerous
types of nuclear systems.

of state based on the two-dimensional
motion of hard spheres. The work was
a collaborative effort with the Tellers,
Edward and Mici, and the Rosenbluths,
Marshall and Arianna (see “Monte Carlo
at Work”). During this study a strategy
was developed that led to greater com-
puting efficiency for equilibrium systems
obeying the Boltzmann distribution func-
tion. According to this strategy, if a sta-
tistical “move” of a particle in the sys-
tem resulted in a decrease in the energy
of the system, the new configuration was
accepted. On the other hand, if there was
an increase in energy, the new configu-
ration was accepted only if it survived a
game of chance biased by a Boltzmann
factor. Otherwise, the old configuration
became a new statistic.

It is interesting to look back over two-
score years and note the emergence, rather
early on, of experimental mathematics,
a natural consequence of the electronic
computer. The role of the Monte Carlo
method in reinforcing such mathematics
seems self-evident. When display units
were introduced, the temptation to exper-

129
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THE FERMIAC OR FERMI’S TROLLEY 3

Fig. 2. – Drawings of the Fermiac, made available by the Bradbury Science Museum of Los
Alamos.

Fig. 3. – Replica of the Fermiac, built at INFN mechanical workshops of Bologna, in 2015, for
the Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”. It mainly consists
of three parts. The lucite platform (on the left of the photo) serves as a neutron direction
selector. The rear drum (in the centre) measures the elapsed time based on the velocity of the
particular neutron in question. The front drum (on the right) measures the distance traveled
by the neutron between subsequent collisions based on the neutron velocity and the properties
of the material being traversed.



Importance Sampling
• Till now we were selecting our configurations from a uniform 
distribution and weight the configurations a posteriori by means 
of the relative Boltzmann probability 

• Instead, we would like to sample a priori from the Boltzmann 
distribution and weight the configurations equally, i.e. 
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Metropolis Monte Carlo

THE 0 R Y 0 F T RAe KEF FEe T SIN R A D I 0 L Y SIS 0 F W ATE R 1087 

instead, only water molecules with different amounts of 
excitation energy. These may follow any of three paths: 

(a) The excitation energy is lost without dissociation 
into radicals (by collision, or possibly radiation, as in 
aromatic hydrocarbons). 

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage. 

(c) The molecules dissociate and escape from the 
cage. In this case we would not expect them to move 
more than a few molecular diameters through the dense 
medium before being thermalized. 

In accordance with the notation introduced by 
Burton, Magee, and Samuel,22 the molecules following 

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952). 

THE JOURNAL OF CHEMICAL PHYSICS 

paths (a) and (b) can be designated H 20* and those 
following path (c) can be designated H 20t. It seems 
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the 
H 20t molecules, but this is not likely to be a complete 
correspondence. 

In conclusion we would like to emphasize that the 
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters 
used. However, this treatment is classical, and a correct 
treatment must be wave mechanical; therefore the 
result of this section cannot be taken as an a priori 
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the 
occurrence of electron capture as described by this 
crude calculation. Further work is clearly needed. 

VOLUME 21, NUMBER 6 JUNE, 1953 

Equation of State Calculations by Fast Computing Machines 
NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER, 

Los Alamos Scientific Laboratory, Los Alamos, New Mexico 

AND 

EDWARD TELLER, * Department of Physics, University of Chicago, Chicago, Illinois 
(Received March 6, 1953) 

A general method, suitable for fast computing machines, for investigatiflg such properties as equations of 
state for substances consisting of interacting individual molecules is described. The method consists of a 
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere 
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared 
to the free volume equation of state and to a four-term virial coefficient expansion. 

I. INTRODUCTION 

T HE purpose of this paper is to describe a general 
method, suitable for fast electronic computing 

machines, of calculating the properties of any substance 
which may be considered as composed of interacting 
individual molecules. Classical statistics is assumed, 
only two-body forces are considered, and the potential 
field of a molecule is assumed spherically symmetric. 
These are the usual assumptions made in theories of 
liquids. Subject to the above assumptions, the method 
is not restricted to any range of temperature or density. 
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system. 
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a 
later paper. Also, the problem in three dimensions is 
being investigated. 

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California. 

II. THE GENERAL METHOD FOR AN ARBITRARY 
POTENTIAL BETWEEN THE PARTICLES 

In order to reduce the problem to a feasible size for 
numerical work, we can, of course, consider only a finite 
number of particles. This number N may be as high as 
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface 
effects we suppose the complete substance to be periodic, 
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we 
define dAB, the minimum distance between particles A 
and B, as the shortest distance between A and any of 
the particles B, of which there is one in each of the 
squares which comprise the complete substance. If we 
have a potential which falls off rapidly with distance, 
there will be at most one of the distances AB which 
can make a substantial contribution; hence we need 
consider only the minimum distance dAB. 

t We will use two-dimensional nomenclature here since it 
is easier to visualize. The extension to three dimensions is obvious. 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
131.234.229.67 On: Wed, 29 Apr 2015 07:37:33
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Metropolis 

The tables turned out to be very useful and 
were widely used. I still have my copy. 

So anywayy Fermi came to Nick with his 
phase-shift problem. As always, Nick was 
extremely helpfuly and they carried out the 
work. I learned all about it when Fermi 
returned to Chicago in the f d  of 1952, so 
steamed up about computers and the 
MANIAC that he announced he would 
give a series of lectures on digital comput- 
ing. We were treated to a magnificent 
course-Fermi at his best. We learned for 
the first time about binary and and hexa- 
decimal arithmetic, Boolean algebra, and 
linear programming. With this kind of 
introductiony we were easy converts to the 
cause of computers in science, and we 
even began to go out to Argonne, where by 
that time the AVIDAC was running, to 
learn how to program and run that ma- 
chine. The gospel according to Nick 
Metropolis was taking effkct. 

There's an amusing story about Edward 
Teller that fits in here. Remember that 
Nick had been a member of Teller's group 
when they were working on the c'super.'' 
Now, Teller was not one to let Femi leave 
him behind. Anything Fermi could do, he 
could do too. So Teller also became a 
student of Nick's and learned how to pro- 
gram the MANIAC. When he came back 
to Chicago-he was on the faculty 
then-not to be outdone by Fermi he an- 
nounced that he would give a colloquium 
on the subject of computers. But when the 
colloquium notice appeared, it didn't con- 
vey exactly the impression he had in- 
tended. It read, 

Edward Teller 
The MANIAC 

To show how closely Fermi inter- 
acted with the MANIAC, I want you to see 
some of his programming efforts, done in 
his own hand. Remember, these were the 
days before FORTRAN. Programming 
was done at the lowest level, in machine 

Fig. 3. A subprogram written by Fermi for converting data in memory from hex- 
adecimal to decimal form and printing the results. 

language. Figure 3 is a subprogram Fermi 
wrote to convert the data in memory into 
decimals and to print the results. Figure 4 
is a block diagram of the program for 
calculating the phase shifts by finding a 
minimum chi-squared in a fit to the data. 
And Figure 5 is a p ~ t o u t  of the program 
from the MANIAC. Note the use of hexa- 
decimal numbers. The comments are writ- 
ten in Fermi's hand. 

Phase-Shift Analysis 

In this period, 1953 and 1954, phase- 
shift analysis was such a hot subject that it 
occupied center stage in the elementary 
particle physics community. At the 

Rochester Conferences held in those and 
subsequent yearsy you could talk about 
alpha three three and alpha three one, and 
everyone understood that these were the 
phase shifts of the pion-proton scattering. 
The physics was important-the delta was 
a new particle. 

In working with the phase-shift analysis 
program, we encountered, for the first 
time, solutions in hyperspace, many-func- 
tional space. You had to get used to the 
fact that this kind of space has its own 
problems of minimization, that you could 
easily fall into the wrong minimum and 
end up with wrong solutions. The vir- 
tuosity of the computer almost made us 
lose sight of the discovery of the proton 

Fall 1986 LOS ALAMOS SCIENCE 



What are we interested in?

• Thermodynamic ensemble properties:
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• Thermodynamic ensemble properties:
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Molecular Dynamics

Equations of Motion

Time evolution of a classical many-body system in a potential

L(R, Ṙ) = T (Ṙ)− V (R) =
1

2

∑

I

MIṘ
2
I − Φ({RI})

Euler-Lagrange equation

d

dt

∂L
∂ṘI

=
∂L
∂RI

Equation of motion

MIR̈I = −
∂Φ({RI})
∂RI

= FI
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Correlations in the Motion of Atoms in Liquid Argon*
A. RAHMAN
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A system of 864 particles interacting with a I.ennard-Jones potential and obeying classical equations of
motion has been studied on a digital computer (CDC 3600) to simulate molecular dynamics in liquid argon
at 94.4'K and a density of 1.374 g cm '. The pair-correlation function and the constant of self-di6usion are
found to agree well with experiment; the latter is 15% lower than the experimental value. The spectrum of
the velocity autocorrelation function shows a broad maximum in the frequency region &o =0.25 (h&T/h). The
shape of the Van Hove function G,(r, t) attains a maximum departure from a Gaussian at about s=30.
X10 "sec and becomes a Gaussian again at about 10 "sec.The Van Hove function Gg(r, t) has been com-
pared with the convolution approximation of Vineyard, showing that this approximation gives a too rapid
decay of Gd, (r,t) with time. A delayed-convolution approximation has been suggested which gives a better 6t
with Gz(r, I); this delayed convolution makes Gz(r, t} decay as t4 at short times and as I at long times.

I. INTRODUCTION
'N recent years considerable use has been made of

~ ~ large digital computers to study various aspects of
molecular dynamics in solids, liquids, and gases. The
following is a description of a computer experiment on
liquid argon (using the CDC 3600) to study the space
and time dependence of two-body correlations which
determine the manner in which slow neutrons are
inelastically scattered from the liquid. If neutron
scattering data of unlimited accuracy and completeness
was available, then the kind of work presented here
would serve the useful though unexciting purpose of
confirming the results already obtained with neutrons.
At present, however, the situation is that theorists are
trying to build models for these two-body dynamical
correlations to account for the observed neutron
spectra; the current interest in the work presented here
is thus to throw some light on the validity of these
models, and to suggest the manner in which some
improvements can be made.
The calculations presented here are based on the

assumption that classical dynamics with a two-body
central-force interaction can give a reasonable descrip-
tion of the motion of atoms in liquid argon. For practical
reasons, further assumptions have to be made, namely,
the interaction potential has to be truncated beyond a
certain range, the number of particles in the assembly
has to be kept rather small, and suitable boundary
conditions have to be imposed on the assembly. I'inally,
the equations of motion have to be solved as a set of
difference equations, thus involving a certain increment
of time to go from one set of positions and velocities to
the next. The details will be set forth in the next section.
At the end of the paper a brief mention will be made of
checks on the validity of these assumptions. The results
presented in this paper are confined mainly to one pair
of values of the temperature and the density of the

system, namely, 94.4'K and 1.374 g cm '. A less
exhaustive study, at 130'IZ and 1.16 g cm ', is men-
tioned briefly at the end.

II. METHOD OF COMPUTATION

The calculations reported here were based on the
following ingredients.
Particles with mass 39.95X1.6747X10 '4 g (the mass

of an argon atom) were assumed to interact in pairs
according to the potential V(r) =4e((o/r)" —(a/r)'),
e/ko ——120'K, o =3.4 A, r being the distance between
the particles. This interaction was assumed to extend
up to a range E.=2.250, so that a particle interacts with
all particles situated within a sphere of that radius;
V(2'"o.) =—e is the minimum of V(r) and at r=R,
U —0.036.
864 such particles were placed in arbitrary positions

in a cubical box of side L=10.2290., thus providing a
density of 1.374 g cm '. Periodic boundary conditions
were imposed, so that at any given moment a particle
with coordinates x, y, s inside the real box implied the
presence of 26 periodic images with coordinates ob-
tained by adding or subtracting L from each Cartesian
coordinate. The density was conserved because when a
particle moves out across one face of the cube another
moves in across the opposite face.
The particles were then allowed to move, and their

motions were calculated using a set of difference
equations with a time increment of 10 ' sec. The details
have been given in an Appendix. The positions and
velocities obtained at successive moments were
recorded on magnetic tape for later analysis. The only
quantity monitored during the progress of the calcula-
tion was the mean-square velocity of the particles
expressed in temperature units,

T= -p vs,
3%kg '=1

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission. where X=864. In the initial stages of the calculation
J. R. Beeler, Jr., in Physics of Many Particle Systems, -edited by f 2. t th f t t (900+)F. Meeron (Qordon and Beach Publishers, Inc., New York, i was no in e region o emPera ure

1964). which the system was to be studied, all velocities were
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How to get (classical) trajectories?

Molecular dynamics

1. Assign initial R (position) and p (momenta)

(R1, p1)

(R2, p2) (R3, p3)
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Ĥ = E (2)

H(R,p) =
X

I

p2
I

2MI
+ V (R) (3)
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ṗ(t)

2m
�t2 � ...

R(t)
�t3

3!

+O(�t4) (13)

R(t+�t) +R(t��t) = 2R(t) +
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ṗ(t)

m
�t2 (15)

1

n

n0
= e

�G�G0
kbT

(1)

ˆH = E (2)

H(R,p) =
X

I

p2
I

2MI
+ V (R) (3)

˙pI = � @H
@RI

= �rIV (R) ! MI
¨RI = FI (4)

˙RI = pI/MI (5)

VBO(
~R) = EDFT (~r; ~R) (6)

L =

1

2

"
X

I

MI
˙R2
I + µ

X

i

Z
dr| ˙�i(r, t)|2

#
� E[n(r;R)] + 2�ij

Z
dr�⇤

i (r, t)�j(r, t)� �ij

�
(7)

Z
dr�⇤

i (r, t)�j(r, t) = �ij (8)

Z =

X

i

e��Ei
(9)

< A >=

1

Z

X

i

e��EiAi ⇡ 1

T

Z T

0
dtA(t)(10)

< B(t0 + t)A(t0) >=

1

Z

X

i

e��EiBi(t0 + t)Ai(t0) ⇡ 1

T

Z T

0
dt0B(t+ t0)A(t0)(11)

R(t+�t) = R(t) +
p(t)

m
�t+
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1. Assign initial R (position) and p (momenta)

(R1, p1)

(R2, p2) (R3, p3)

2. Evolve (numerically) Newton’s equation of 
motion for a finite time increment

Potential

Force

(R3(t+dt), p3(t+dt))

(R2(t+dt),  
p2(t+dt))

(R1(t+dt), p1(t+dt))

3. Assign new position and momenta 

Integrating Newton’s EOM
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Verlet Algorithm

Force
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ṗ(t)

2m
�t2 � ...

R(t)
�t3

3!
+O(�t4) (12)

1

n

n0
= e

�G�G0
kbT (1)
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ṗ(t)

2m
�t2 � ...

R(t)
�t3

3!
+O(�t4) (12)

R(t+�t) +R(t��t) = 2R(t) +
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Verlet Algorithm

Force

• Simple truncation of the Taylor expansion is a bad idea 
• The naive „forward Euler“ algorithm is 

• not time reversible 
• does not conserve phase space volume 
• does not conserve energy

• Use Verlet’s algorithm instead
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ṗI = � @H
@RI

= �rIV (R) (4)

VBO(~R) = EDFT (~r; ~R) (5)

L =
1

2

"
X

I

MIṘ
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Verlet Algorithm

Force

“Verlet” is also symplectic: conserves dp⋀dR and the form of 
Hamilton’s equations

Verlet’s Algorithm



Velocity-Verlet Algorithm
Molecular Dynamics

Velocity Verlet Integrator

RI(t+∆t) = RI(t) +∆t× ṘI(t) +
∆t2

2MI
FI(t)

Calculate FI(t+∆t)

ṘI(t+∆t) = ṘI(t) +
∆t

2MI
[FI(t) + FI(t+∆t)]

Simple and efficient: Only FI(t), no higher derivatives required
Explicitly time reversible
Symplectic, i.e. conserves phase space volume

Excellent long time stability⇒ Energy conservation

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 6 / 41



Lyapunov Instability
Molecular Dynamics

Lyapunov Instability
Why not going beyond the velocity Verlet Algorithm?

It’s impossible to determine initial conditions: ∆R×∆P ∼ !

Finite numerical accuracy of the integrator as well as Φ(R)

Even worse: The Lyapunov instability
∣
∣R(t) −R′(t)

∣
∣ ≈ ϵ× eλt

suggests an exponential dependence on them

I.e. even knowing Φ(R) exactly still causes an eλt divergence

Neither possible nor desirable to calculate exact trajectories

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 8 / 41



Molecular DynamicsConditions that we can simulate

• Microcanonical (NVE) ensemble: Number of particles, Volume, 
and total Energy are conserved

• Natural ensemble to simulate molecular dynamics (follows 
directly from Hamilton’s equation of motion



Molecular DynamicsConditions that we can simulate

• Microcanonical (NVE) ensemble: Number of particles, Volume, 
and total Energy are conserved

• Natural ensemble to simulate molecular dynamics (follows 
directly from Hamilton’s equation of motion

• Canonical (NVT) ensemble: Number of particles, Volume, and 
Temperature are conserved

• System in contact with a heat bath (discussed later on)



  

Sampling the canonical ensemble: thermostatsThe Canonical Ensemble



Maxwell Distribution
Temperature definition

# of particles

Kinetic Energy (a.u.)
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kinetic
energy: p2/2M

Probability distribution of the kinetic energy:
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How to model a thermostat: first ideas

• Temperature rescaling: Berendsen “thermostat”

• Rescale velocities by a factor containing the ratio of target and 
instant temperature 

• Does not sample the canonical ensemble (wrong temperature 
distribution)

• “Flying ice-cube” effect: rotations and translations acquire high Ekin 
and vibrations are frozen 

H. J. C. Berendsen, et al. J. Chem. Phys. 81 3684 (1984)

• Simple stochastic idea: Andersen thermostat

• At each nth time-step, replace velocity of a random particle by one 
drawn from a Maxwell-Boltzmann distribution at target 
temperature

• Not very efficient, no conserved quantity

• Very sensitive on n H. C. Andersen, J. Chem. Phys. 72, 2384 (1980)

Thermostats: First Ideas
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G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).

Combine concepts from velocity rescaling (fast!) with
concepts from stochastic thermostats (accurate!)

Temperature
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White noise
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• Very successful thermostat, weakly dependent on relaxation time τ
• Pseudo-Hamiltonian is conserved

Bussi, Parrinello, Phys. Rev. E 75, 056707 (2007)



Few words on newtonian vs. Langevin dynamics
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Heavy(er) body in a solvent (or gas)

friction random  
force

Newton vs. Langevin
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ṗ = F �
Z t

�1
K(t� ⌧)p(⌧) + ⇣(t) (41)

˙R = p/m (42)

HNH =

X

I

p2
I

2MI
+ V (R) +

p2⌘
2Q

+ 3NkBT⌘ (43)

˙pI = FI +
p⌘
Q
pI (44)

FI = �rRIV (45)

FI = �� ˙RI + ⇠(t) (46)

3

Heavy(er) body in a solvent (or gas)

friction random  
force

• In thermal equilibrium, drag of the friction and kicks of the random 
noise balance each other - Fluctuation Dissipation Theorem (FDT) 
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No memory of past times  
No frequency dependence (white noise)

Newton vs. Langevin
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Molecular DynamicsConditions that we can simulate

• Microcanonical (NVE) ensemble: Number of particles, Volume, 
and total Energy are conserved

• Natural ensemble to simulate molecular dynamics (follows 
directly from Hamilton’s equation of motion

• Canonical (NVT) ensemble: Number of particles, Volume, and 
Temperature are conserved

• System in contact with a heat bath (discussed later on)

• Isothermic-Isobaric (NPT) ensemble: Number of particles, 
Pressure, and Temperature are conserved



Bath

• Definition of instantaneous pressure:  
 

• Similar schemes as thermostats: pressure rescaling, extended 
Lagrangian, stochastic pressure rescaling  
Parinello and Rahman, J. Appl. Phys 52, 7182 (1981);  
Bussi, Zykova-Timan, Parrinello, J. Chem. Phys. 130, 074101 (2009)

• Use thermostat together with a barostat to control pressure 
and temperature

Pressure control: Isobaric-isothermic ensemble

System

MD: Final Flow Chart

Simulation of Biomolecules – p. 31

MD simulations at constant pressure

• Most experiments are performed at constant pressure instead of
constant volume
⇒ isothermal-isobaric ensemble

• The volume is thus a dynamical variable that changes during the
simulation.

• The pressure of a classical N -body system can be calculated
using Clausius virial theorem,

P =
2

3V
(Ekin − Ξ) (9)

with the box volume V , the kinetic energy Ekin and the inner virial
for pairwise additive interactions

Ξ =
1

2

∑

i<j

rij · f(rij) (10)

f(rij) is the force between particles i and j at a distance rij .

Simulation of Biomolecules – p. 32
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Molecular DynamicsConditions that we can simulate

• Microcanonical (NVE) ensemble: Number of particles, Volume, 
and total Energy are conserved

• Natural ensemble to simulate molecular dynamics (follows 
directly from Hamilton’s equation of motion

• Canonical (NVT) ensemble: Number of particles, Volume, and 
Temperature are conserved

• System in contact with a heat bath (discussed later on)

• Isothermic-Isobaric (NPT) ensemble: Number of particles, 
Pressure, and Temperature are conserved

“Computer experiment”: equilibrate system and measure



Molecular Dynamics 
(MD)

Ab-Initio MD 
(AIMD)

Path-Integral MD 
(PIMD)

Ab-Initio PIMD 
(AI-PIMD)

Electrons

N
uc

le
i

MIR̈I = −∇RI
[ε(R) + VKK(R)]

He(r;R)ψ(r;R) = ε(R)ψ(r;R)

Classical Quantum Mechanical

C
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Q
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Ab-Initio Molecular Dynamics Born-Oppenheimer Molecular Dynamics

Born-Oppenheimer Molecular Dynamics

Φ(R) = EDFT
KS

[

{ψi};R
]

+ EII(R) = E
[

{ψi};R
]

Born-Oppenheimer Lagrangian

LBO
(

{ψi};R, Ṙ
)

=
1

2

N
∑

I=1

MIṘ
2
I −min

{ψi}
E
[

{ψi};R
]
∣
∣
∣
∣
{⟨ψi|ψj⟩=δij}

The forces are obtained by solving the Euler-Lagrange equation

d

dt

∂L
∂ṘI

=
∂L
∂RI

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 18 / 41
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Ab-Initio Molecular Dynamics Born-Oppenheimer Molecular Dynamics

Nuclear forces in BOMD

MIR̈I = −∇RI

[

min
{ψi}

E
[

{ψi};RI

]
∣
∣
∣
∣
{⟨ψi|ψj⟩=δij}

]
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∂E
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Λij
∂
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− 2
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⎡

⎣
∂E

[

{ψi};RI

]

∂⟨ψi|
−

∑

j

Λij |ψj⟩

⎤

⎦

If and only if ⟨ψi| is an eigenfunction, then

MIR̈I = −
∂E

∂RI
+

∑

i,j

Λij
∂

∂RI
⟨ψi | ψj⟩

However, in general the HF-Theorem can not be assumed

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 19 / 41

Born-Oppenheimer MD



Ab-Initio Molecular Dynamics Born-Oppenheimer Molecular Dynamics

Convergence of the Born-Oppenheimer forces

May be good enough to optimize the geometry, but not for AIMD

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 20 / 41
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Ab-Initio Molecular Dynamics Born-Oppenheimer Molecular Dynamics

Born-Oppenheimer Molecular Dynamics: Summary

Large integration time steps

Potential energy on the BO surface

Expensive optimization of the WF required

Very stringent SCF convergence requirement

However: >> 105 electronic structure calculations are required

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 21 / 41
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Formulations Potential energy Initialization Verlet algorithm MD: Steps MD: Thermo and barostats CP: Car-Parrinello Atomic units MD and CP textbooks

The Car-Parrinello formulation II

"The 2009 Dirac Medal recognizes the joint contributions of Roberto Car and Michele Parrinello in developing the ab initio
simulation method in which they combined, elegantly and imaginatively, the quantum mechanical density functional method for the
calculation of the electronic properties of matter with molecular dynamics methods for the Newtonian simulation of atomic motions.
The Car-Parrinello method has had an enormous impact, joining together the fields of simulation and of electronic structure theory,
and has given rise to a variety of applications well beyond condensed matter physics."

V. Luaña & A. Otero-de-la-Roza () Molecular dynamics: Car-Parrinello method ZCAM, Zaragoza 2013 29 / 36

Car-Parrinello MD



R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

d

dt

∂L

∂ṘI

=
∂L

∂RI
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)
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µ
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)

Car-Parrinello MD



R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

MIR̈I = −∇RI

[

E
[
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]

∣

∣
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{⟨ψi|ψj⟩=δij}

]
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∂RI
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Car-Parrinello MD



R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

Ab-Initio Molecular Dynamics Car-Parrinello Molecular Dynamics

What is the big deal?
Beside that it circumvent the SCF cycle, what is so clever about it?

If µ is sufficiently small, the electrons adiabatically follow the ions
In this case the metastable state can be sustained and ψ̈i ≃ 0

∂E
[

{ψi};RI

]

∂⟨ψi|
−
∑

j

Λij |ψj⟩ ≃ 0

I.e. on ionic timescales the electron oscillations averages out
⇒ ⟨ψi| is an eigenfunction of HCP

e , thus the HF-Theorem holds
Energies & Forces are NOT on the BO surface, but are consistent

d

dt

{

HBO +
1

2
µ

M
∑

i=1

⟨ψ̇i | ψ̇i⟩

}

=
dHCP
dt

= 0

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 33 / 41
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Ab-Initio Molecular Dynamics Car-Parrinello Molecular Dynamics

Adiabatic separation
Vibrational spectra of electrons and ions do not overlap

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 28 / 41
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Ab-Initio Molecular Dynamics Car-Parrinello Molecular Dynamics

Metallic systems: Loss of adiabaticity

Vacancy in a hot 64-atom Si cell

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 34 / 41
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Ab-Initio Molecular Dynamics Car-Parrinello Molecular Dynamics

Metallic systems: Electron Thermostat
P. E. Blöchl & M. Parrinello, Phys. Rev. B 45, 9413 (1992)

64 atoms of molten aluminum
(a): Without thermostat
(b): With thermostat

Thomas D. Kühne (University of Mainz) Ab-Initio Molecular Dynamics Söllernhaus Seminar, 12.07.12 35 / 41
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Introduction Car-Parrinello Molecular Dynamics

A very brief review of CPMD III
The fictitious mass parameter µ

Principal task of µ: Coupling between ṘI and ψ̇i

|ψµ(r, t)− ψ0(r, t)| ≤ C
√
µ

∆tmax ∝
√

µ

∆Egap

µ acts as a continuous slider between speed and accuracy
Typically, the timestep is ∼ 5×−10× smaller than in BOMD
Depends on the application if either CPMD or BOMD is to favor
Metals are problematic: Finite electron temperature or thermostats

Desirable to eliminate µ!

Thomas D. Kühne (University of Mainz) Next Generation CPMD: Theory & Application NAMET Workshop, 23.09.2010 5 / 34

Car-Parrinello MD



BOMD vs. CPMD
BOMD CPMD

Energy Conservation fair excellent

Iterative Optimization yes no

Exactly on the BO-Surface yes no

Integration time-step large small

Metals and small band-gap possible difficult



Second-Generation CPMD

T. D. Kühne, WIREs Comput. Mol. Sci. 4, 391 (2014)



Second-Generation CPMD

T. D. Kühne and E. Prodan, Annals of Physics 391, 120 (2018)



Second-Generation CPMD

T. D. Kühne, M. Krack, F. Mohamed and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)



Second-Generation CPMD

T. D. Kühne, M. Krack, F. Mohamed and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)



Second-Generation CPMD10
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FIG. 1. Deviations from the BO surface of liquid SiO2 in
terms to total energies (upper panel) and mean force devia-
tions (lower panel). The deviation in the energies corresponds
to a constant shift of 4.16×10−4 Hartree per atom for one cor-
rector step and 3.5×10−5 Hartree per atom for two corrector
steps. The average mean force deviation is unbiased.

Illustrative Examples: Liquid Silicon, Silica and
Water

For the purpose of demonstrating this new approach,
we have implemented it in the mixed Gaussian Plane
Wave [106] code Quickstep [107, 108], which is part
of the publicly available suite of programs CP2K [109].
In order to illustrate that this method works well ir-
respective of band-gap, system size and type, calcula-
tions on liquid metallic silicon, silica and water are pre-
sented. All of these systems are known to be very dif-
ficult, and are examples of liquid metals (Si), complex
and highly polarizable ionic liquids (SiO2), as well as
hydrogen bonded fluids (H2O). The fact that the simula-
tions have been performed in the liquid phase at 3000 K,
3500 K and 325 K respectively, leads to rapidly varying
density matrix elements, thus making the propagation of
the electronic degrees of freedom particularly challeng-
ing. Hence, the selected test cases can be considered as
worst-case scenarios for any computational method.
All simulations have been performed at their ex-

perimental liquid densities using triple-zeta (TZV2P)
basis sets, adequate density cutoffs, norm-conserving
Goedecker-Teter-Hutter pseudopotentials [110, 111] and
the generalized gradient approximation to the exact ex-
change and correlation functional [112]. For simplicity
the Brillouin zone is sampled at the Γ-point only, while
Eq. (43) is integrated using the algorithm of Ricci and
Ciccotti [113], where the values for γD turned out to be
in the range of 10−4 fs−1. The new C’s are predicted
using K = 4 in Eq. (36), which ensures time-reversibility
up to O(∆t6).
First, the accuracy in terms of the energetic deviation

from the BO surface is considered. As can be seen in
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FIG. 2. Partial pair-correlation functions g(r) of liquid Si
(upper left panel) and liquid SiO2 at 3000 K and 3500 K,
respectively.

FIG. 1 the energies are an upper bound to the electronic
ground state and are displaced by a very small and ap-
proximately constant amount. It is also shown that, as
already mentioned, the deviation from the BO surface
can be even further reduced by increasing the number of
corrector steps. In fact, it is actually possible to control
the deviation from the BO surface by varying the number
of corrector steps in order to achieve a preassigned accu-
racy level. However, in the following only simulations
based on a single corrector step, i.e. only one precondi-
tioned electronic gradient calculation, will be reported.
Nevertheless, let us now to turn to more realistic prob-

lems such as those shown in FIG. 2. Although these sim-
ulations have been performed with only a single corrector
step, they are still amazingly close to the BOMD refer-
ence results. It should be emphasized that even in liquid
Si, which is metallic and poses problems when using an
ordinary CP scheme, a single corrector step is sufficient.
This establishes the efficiency of this method, since only
a single preconditioned gradient calculation with no ad-
ditional minimization step has to be performed. The
possible acceleration, in comparison with regular BOMD
calculations, depends crucially on the system studied. In
the undoubtedly difficult cases just presented a speed-
up of two orders of magnitude compared to using a pure
extrapolation scheme have been observed [51, 108]. For
simpler problems still an increase in efficiency of at least
one order of magnitude can be expected.
In FIG. 3 we present results, which demonstrate that

also dynamical properties can be accurately calculated.
To that extend the velocity autocorrelation function and
its temporal Fourier transform at 325 K is shown. The
results are in good agreement with accurate reference
calculations and are consistent with experiment, as well
as ab-initio all-electron calculations [58], showing that
in spite of the stochastic nature of Eq. (43) dynamical
properties can also be simulated. This implies, that also
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„On-the-fly“ Spectroscopy
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Importance of NQE
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What about dynamical observables?

Path Integral MD uses ring polymer trajectories to estimate static 
averages of the form:

However, many important quantities are given by dynamic averages:

PIMD does NOT give access to real time propagation (momenta are 
fictitious)

Ring-Polymer MD
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