
G(A)PW Electronic 
Structure Theory

Thomas D. Kühne 
Chair of Theoretical Chemistry  
Dynamics of Condensed Matter



CP2K: The Swiss Army Knife 
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 Semiempirical QC & TB Methods 
 Classical Molecular Mechanics 
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 Density Functional Theory and the KS formalism 

 Gaussian and Plane Wave method (GPW) 

 Basis sets and pseudo potentials 

 Gaussian Augmented Plane Wave method (GAPW) 

 Orbital Transformations (OT) 

 Diagonalisation and Mixing 

 Metals 



DFT
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Why DFT?

 Explicit inclusion of electronic structure 

 Predicable accuracy (unlike empirical approaches, parameter free) 

 Knowledge of electronic structure gives access to evaluation of many 
observables 

 Better scaling compared to many quantum chemistry approaches 

 Achievable improvements: development of algorithms and functionals

large systems, condensed matter, environment 
effects, first principle MD

Density Functional Theory



Hohenberg-Kohn TheoremsHohenberg-Kohn theorems
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Theorem I

 Given a potential, one obtains the wave functions via Schrödinger equation

Density functional theory
Bloch theorem / supercells

Motivation
History
Kohn-Sham method

History of DFT — II

Walter Kohn

DFT essentials CECAM NMR/EPR tutorial 2013 5 / 37

Walter Kohn
H(r,R) (r,R) = E(R) (r,R)

V
ext

(r,R) ) H(r,R) = T (r) + V
ext

(r,R) + V
ee

(r)

 The density is the probability distribution of the wave functions

the potential and hence also the total energy are 
unique functional of the electronic density n(r)

n(r) , V
ext

(r,R)



Hohenberg-Kohn Total EnergyHK Total energy
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Theorem II: The total energy is variational

 Ekin QM kinetic energy of electron (TF) 

 Eext energy due to external potential 

 EH classical Hartree repulsion 

 Exc non classical Coulomb energy: el. correlation

Etot[n] = Ekin[n] + Eext[n] + EH[n] + Exc[n]

E[n] � E[nGS]



Kohn-Sham Energy FunctionalKohn-Sham: non-interacting 
electrons
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Kinetic energy of non interacting electrons

Electronic interaction with the external potential

E
ext
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Z
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Kohn-Sham Energy FunctionalKS energy functional
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Classical e-e repulsion

J [n] =
1

2

Z

r

Z

r0

n(r)n(r0)

|r� r0| drdr0 =
1

2

Z

r
n(r)VH(r)dr

Kohn-Sham functional

EXC[n] = Ekin[n]� Ts[n] + Eee[n]� J [n]︸non-classical part

E
KS

[n] = T
s

[n] + E
ext

[n] + J [n] + E
XC

[n]



Kohn-Sham EquationsKS Equations
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Orthonormality constraint

︸Lagrange multipliers

Variational search in the space of orbitals

⌦KS[ i] = EKS[n]�
X

ij

✏ij

Z
 ⇤
i (r) j(r)dr

�⌦KS[ i]

� ⇤
i

= 0

HKS i =


�1

2
r2 + VKS

�
 i =

X

ij

✏ij j

VKS(r) = Vext(r) + VH(r) + VXC(r)



Kohn-Sham EquationsKS Equations
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!ij diagonal 
�1

2
r2 + VKS(r)

�
 i(r) = ✏i i(r)

 KS equations looking like Schrödinger equations 

 coupled and highly non linear 

 Self consistent solution required  

 ! and ψ are help variables 

 KS scheme in principle exact (Exc?)



Self-consistency
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 Generate a starting density ⇒ ninit 

 Generate the KS potential ⇒ VKSinit 

 Solve the KS equations ⇒ ! , ψ 

 Calculate the new density ⇒ n1 

 New KS potential ⇒ VKS1 

 New orbitals and energies  ⇒ !1 , ψ 

 New density ⇒ n2 

 ….. 

until self-consistency to required precision

SCF Method

Input
3D Coordinates
of atomic nuclei

Fock Matrix
Calculation

Fock Matrix
Diagonalization

SCF
Converged?

Initial Guess
Molecular Orbitals

(1-electron vectors) 

Calculate
Properties

End 

Yes No

Self-Consistency



Local Density ApproximationLocal Density Approximation
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ELDA

xc

[n] =

Z
n(r)"

xc

(n)dr

V LDA

xc

(r) =
�ELDA

xc

[n]

�n(r)
= "

xc

(n(r)) + n(r)
@"

xc

(n)

@n

"
xc

(n) = "
x

(n) + "
c

(n)

Two contributions

Uniform electron gas

Dirac ex-functional QMC interpolation (Ceperly-Alder)

Applicable with slow-varying densities



Generalized Gradient Approx.Generalised Gradient 
Approximation
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EGGA

xc

[n] =

Z
n(r)"

xc

(n)F
xc

⇥
n,rn,r2n, ...

⇤
dr

Gradient expansion

GGA derivation

 Explicit form not known 

 Theoretical approach: by fulfilling formal conditions as 
sum rules, long range decay, scaling rules, high/low 
density limits, etc. 

 Fit parameters to experimental results (mol. database)



CP2K OverviewCP2K overview
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 Fortran95, 1’000’000 lines of code, rapid development 

 Freely available, open source, GNU General Public License  

 Community Developers Platform (UZH, IBM Research, ETHZ, PNL, LLNL, PSI, U Bochum, 
EPCC UK, .....) 

 User community through Google groups 

 MPI and OpenMP parallelisation, CUDA C extensions : porting on >100’000 cores and to GPUs 

 Quality control: automatic regression and memory leak (>2000) 

 Force Methods: KS/OF DFT (vdw), Hybrid, MP2, RPA, Classical Force Fields, QM/MM, DFTB, 
semi-empirical, mixed 

 Sampling Methods: GeoOpt, CellOpt, Molecular Dynamics, Ehrenfest MD, FES and PES tools 
(Metadynamics), Monte Carlo, PIMD 

 Properties and spectroscopy (vibrational, IR,TDDFT, NMR, EPR, NEXAFS, Raman...) 

 External Library:  Lapack/BLAS, ScaLapack/BLACS, MPI, OpenMP, FFTW, libint, libxc, ELPA 

 Internal library for handling sparse matrices (DBCSR)



Basis Set RepresentationDFT
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System size {Nel, M}, P [MxM], C [MxN]

Density functional Variational principle

Constrained 

minimization problem

K(C)C = T(C) + Vext(C) + EH(C) + Exc(C) = SC�

Matrix equation

Kohn-Sham formalism: matrix formulation when the wavefunction is expanded into a basis

n(r) =
�

i

�

�⇥

fiC�iC⇥i��(r)�⇥(r) =
�

�⇥

P�⇥��(r)�⇥(r)

⇥i(r) =
�

�

C�i��(r)

P = PSP

E[{�i}] = T [{�i}] + Eext[n] + EH[n] + EXC[n] + EII

Thursday, 10 February 2011



Critical TasksCritical Tasks
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O(N) scaling in basis set size

Big systems:  biomolecules, interfaces, material science  

1000+ atoms

Long time scale: 1 ps = 1000 MD steps, processes 

 several ps a day

Introduction
Energy minimization and sparseness function

Time reversible BOMD
Summary

Why are O(N) methods so important?

With conventional SCF methods, hardware improvements bring
only small gains in capability due to the steep scaling of
computational time with system size, N.

Valéry Weber

Construction of the Kohn-Sham matrix

Coulomb potential

XC potential

HF/exact exchange

Fast and robust minimization of the 
energy functional

Efficient calculation of the density matrix 
and construction of the MOs (C)

Thursday, 10 February 2011



QuickstepQuickstep
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 Gaussian basis sets 

 Plane waves auxiliary basis for Coulomb integrals 

 Regular grids and FFT

 Sparse matrices, efficient screening, linear scaling KS     
matrix computation 

  All-electron calculations with GAPW

 Fast/robust direct wavefunction optimizer (OT) 

Thursday, 10 February 2011



Classes of Basis SetsClasses of Basis Sets
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  Extended basis sets, PW : condensed matter 

  Localised basis sets centred at atomic positions, GTO  

 Mixed (GTO+PW) to take best of two worlds, GPW 

 Augmented basis set, GAPW:  separated hard and soft density domains 

Idea of GPW: auxiliary basis set to represent the density



Gaussian Basis SetsGaussian basis sets
Pros and Cons

good results already for small basis sets

correspondence to the intuitive chemical picture

all-electron description

can be tuned for each application (and even each atom)

no implicit periodicity

non-orthogonal

depend on the atomic positions (Pulay forces)

basis set superposition error (BSSE)

systematic improvement is less straightforward

over-completeness causes linear dependencies

Matthias Krack (ETH Zurich) CP2K/QUICKSTEP Seminar – Nov. 23, 2006 4 / 43



Plane Waves Basis SetsPlane waves basis sets
Pros and Cons

orthogonal

independent of the atomic positions (no Pulay forces)

no basis set superposition error (BSSE)

systematic improvement simply by increasing the cutoff

implicit periodicity

no selective tuning possible

large number of basis functions is needed

pseudo potentials are needed

chemical information not directly accessible

Matthias Krack (ETH Zurich) CP2K/QUICKSTEP Seminar – Nov. 23, 2006 5 / 43



GPW Ingredients
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 Gaussian basis sets (many terms analytic) 

 Pseudo potentials 

 Plane waves auxiliary basis for Coulomb integrals  

 Regular grids and FFT for the density 

 Sparse matrices (KS and P) 

 Efficient screening

⇥i(r) =
�

�

C�i��(r) �↵(r) =
X

m

dm↵gm(r) gm(r) = x

m
x

y

m
y

z

m
z

e

�↵
m

r2

linear scaling KS matrix computation for GTO

G. Lippert et al, Molecular Physics, 92, 477, 1997 
J. VandeVondele et al, Comp. Phys. Comm.,167 (2), 103, 2005

GPW Ingredients



Gaussian Basis Set
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CP2K: Ab initio Molecular Dynamics Simulations Towards Linear Scaling HF/Exact Exchange Summary Acknowledgment

Sparse Matrices

• Operator matrices are rather sparse

HIV-1 Protease-DMP323 complex in solution (3200 atoms)

• Orbital matrices are invariant under unitary transformation

Chemical localization: Boys, Edminston-Rudenberg, etc.

Mathematical localization

Operator matrices are sparse

 Localised, atom-position dependent GTO basis 

�µ(r) =
�

m

dmµgm(r)

 Expansion of the density using the density matrix

n(r) =
�

µ�

Pµ��µ(r)��
�(r)

  

Gaussian basis: 
The sparsity of H and S

Sαβ=∫ϕα(r)ϕβ(r )dr

Hαβ=∫ϕα(r )v(r)ϕβ(r)dr

The overlap (integral of the product) rapidly 
decays with the spatial separation of the basis 
functions.

ϕα(r) ϕβ(r)

Sαβ

The sparsity pattern of S and H 
depends on the basis and the 
spatial location of the atoms, but not 
on the chemical properties of the 
system in GGA DFT.

Sµ⌫ =

Z
'µ(r)'⌫(r)dr

Hµ⌫ =

Z
'µ(r)V (r)'⌫(r)dr

Gaussian Basis Set



Analytic Integrals
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Cartesian Gaussian

g(r,n, �,R) = (x�Rx)nx(y �Ry)ny (z �Rz)nze��(r�R)2

(a + 1i|O(r)|b)

Obara-Saika recursion relations

(0a|O(r)|0b)

Obara and Saika JCP 84 (1986), 3963

@

@Ri
|n) = 2⌘|n+ 1i)� ni|n� 1i)

Differential relations
@

@Ri
|n) = � @

@ri
|n)

Analytic Integrals



OS Recursion relations

17

@

@ri
(a|O(r)|b) = 0

(a|O(r)|b+ 1i) = (a+ 1i|O(r)|b) + (Ai �Bi)(a|O(r)|b)

Invariance of integrals

Shift of angular momentum

Overlap
(0a|0b) =

✓
⇡

↵+ �

◆3/2

exp[�⇠(A�B)

2
] ⇠ =

↵�

↵+ �

(a+ 1i|b) = (Pi �Ai) (a|b) +
1

2(↵+ �)
[nia(a� 1i|b) + nib(a|b� 1i)]

P =
↵A+ �B

↵+ �

O-S Recursion Relations



Generate GTO Basis SetGenerate GTO basis set
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&ATOM 
  ELEMENT Ru 
  RUN_TYPE BASIS_OPTIMIZATION 
  ELECTRON_CONFIGURATION  CORE 4d7 5s1 
  CORE [Kr] 
  MAX_ANGULAR_MOMENTUM 2 
  &METHOD 
     METHOD_TYPE  KOHN-SHAM 
     &XC 
       &XC_FUNCTIONAL 
         &PBE 
         &END 
       &END XC_FUNCTIONAL 
     &END XC 
  &END METHOD 
  &OPTIMIZATION 
    EPS_SCF 1.e-8 
  &END OPTIMIZATION 
  &PP_BASIS 
   NUM_GTO  6 6 6 
   S_EXPONENTS 3.73260 1.83419 0.80906 0.34515 
0.13836 0.04967 
   P_EXPONENTS 3.73260 1.83419 0.80906 0.34515 
0.13836 0.04967 
   D_EXPONENTS 3.73260 1.83419 0.80906 0.34515 
0.13836 0.04967 
   EPS_EIGENVALUE 1.E-14 
  &END PP_BASIS 

  &POTENTIAL 
    PSEUDO_TYPE GTH 
    &GTH_POTENTIAL 
   1     0    7 
    0.61211332  1  5.04489332 
   3 
    0.6421504 2 4.625563 -1.8033490 
                          2.32811359 
    0.6793665 2 3.233952 -2.42101064 
                          2.86457842 
    0.3805972 2 -15.5316  13.58045054 
                         -15.39878349 
    &END GTH_POTENTIAL 
    CONFINEMENT   0.5  20.00  4.5 
  &END POTENTIAL 
  &POWELL 
     ACCURACY   1.e-8 
     STEP_SIZE  1.0 
  &END POWELL 
&END ATOM



GTO Basis Sets in CP2KGTO in CP2K
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Tools for the optimisation of GTO basis sets are 
available in cp2k, based on atomic and molecular 

electronic structure calculations

 The repository contains several GTO libraries

cp2k/data/ 
ALL_BASIS_SETS         BASIS_SET              HFX_BASIS              dftd3.dat 
ALL_POTENTIALS         BASIS_ZIJLSTRA         HF_POTENTIALS          nm12_parameters.xml 
BASIS_ADMM             DFTB                   MM_POTENTIAL           rVV10_kernel_table.dat 
BASIS_ADMM_MOLOPT      EMSL_BASIS_SETS        NLCC_POTENTIALS        t_c_g.dat 
BASIS_MOLOPT           GTH_BASIS_SETS         POTENTIAL              t_sh_p_s_c.dat 
BASIS_RI_cc-TZ         GTH_POTENTIALS         README                 vdW_kernel_table.dat



Basis Set LibraryBasis Set library

7

GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS

 O SZV-GTH

  1

  2  0  1  4  1  1

        8.3043855492   0.1510165999  -0.0995679273

        2.4579484191  -0.0393195364  -0.3011422449

        0.7597373434  -0.6971724029  -0.4750857083

        0.2136388632  -0.3841133622  -0.3798777957

#

O DZVP-GTH

  2

  2  0  1  4  2  2

        8.3043855492   0.1510165999   0.0000000000  -0.0995679273   0.0000000000

        2.4579484191  -0.0393195364   0.0000000000  -0.3011422449   0.0000000000

        0.7597373434  -0.6971724029   0.0000000000  -0.4750857083   0.0000000000

        0.2136388632  -0.3841133622   1.0000000000  -0.3798777957   1.0000000000

  3  2  2  1  1

        1.1850000000   1.0000000000

#

O TZVP-GTH

  2

  2  0  1  5  3  3

       10.2674419938   0.0989598460   0.0000000000   0.0000000000  -0.0595856940   0.0000000000   0.0000000000

        3.7480495696   0.1041178339   0.0000000000   0.0000000000  -0.1875649045   0.0000000000   0.0000000000

        1.3308337704  -0.3808255700   0.0000000000   0.0000000000  -0.3700707718   0.0000000000   0.0000000000

        0.4556802254  -0.6232449802   1.0000000000   0.0000000000  -0.4204922615   1.0000000000   0.0000000000

        0.1462920596  -0.1677863491   0.0000000000   1.0000000000  -0.2313901687   0.0000000000   1.0000000000

  3  2  2  1  1

        1.1850000000   1.0000000000

Thursday, 10 February 2011



Basis Set LibraryBasis Set library
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GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS

 O  SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q6

 1

 2 0 1 7 1 1

     12.015954705512 -0.060190841200  0.036543638800

      5.108150287385 -0.129597923300  0.120927648700

      2.048398039874  0.118175889400  0.251093670300

      0.832381575582  0.462964485000  0.352639910300

      0.352316246455  0.450353782600  0.294708645200

      0.142977330880  0.092715833600  0.173039869300

      0.046760918300 -0.000255945800  0.009726110600

#

 O  DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q6

 1

 2 0 2 7 2 2 1

     12.015954705512 -0.060190841200  0.065738617900  0.036543638800 -0.034210557400  0.014807054400

      5.108150287385 -0.129597923300  0.110885902200  0.120927648700 -0.120619770900  0.068186159300

      2.048398039874  0.118175889400 -0.053732406400  0.251093670300 -0.213719464600  0.290576499200

      0.832381575582  0.462964485000 -0.572670666200  0.352639910300 -0.473674858400  1.063344189500

      0.352316246455  0.450353782600  0.186760006700  0.294708645200  0.484848376400  0.307656114200

      0.142977330880  0.092715833600  0.387201458600  0.173039869300  0.717465919700  0.318346834400

      0.046760918300 -0.000255945800  0.003825849600  0.009726110600  0.032498979400 -0.005771736600

#

 O  TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q6

 1

 2 0 2 7 3 3 1

     12.015954705512 -0.060190841200  0.065738617900  0.041006765400  0.036543638800 -0.034210557400 -0.000592640200  0.014807054400

      5.108150287385 -0.129597923300  0.110885902200  0.080644802300  0.120927648700 -0.120619770900  0.009852349400  0.068186159300

      2.048398039874  0.118175889400 -0.053732406400 -0.067639801700  0.251093670300 -0.213719464600  0.001286509800  0.290576499200

      0.832381575582  0.462964485000 -0.572670666200 -0.435078312800  0.352639910300 -0.473674858400 -0.021872639500  1.063344189500

      0.352316246455  0.450353782600  0.186760006700  0.722792798300  0.294708645200  0.484848376400  0.530504764700  0.307656114200

      0.142977330880  0.092715833600  0.387201458600 -0.521378340700  0.173039869300  0.717465919700 -0.436184043700  0.318346834400

      0.046760918300 -0.000255945800  0.003825849600  0.175643142900  0.009726110600  0.032498979400  0.073329259500 -0.005771736600

Thursday, 10 February 2011



Basis Set LibraryBasis Set library
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GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS
  O  6-31Gx 6-31G*

  4

  1  0  0  6  1

       5484.67170000          0.00183110

        825.23495000          0.01395010

        188.04696000          0.06844510

         52.96450000          0.23271430

         16.89757000          0.47019300

          5.79963530          0.35852090

  1  0  1  3  1  1

         15.53961600         -0.11077750          0.07087430

          3.59993360         -0.14802630          0.33975280

          1.01376180          1.13076700          0.72715860

  1  0  1  1  1  1

          0.27000580          1.00000000          1.00000000

  1  2  2  1  1

          0.80000000          1.00000000

#

O  6-31Gxx 6-31G**

  4

  1  0  0  6  1

       5484.67170000          0.00183110

        825.23495000          0.01395010

        188.04696000          0.06844510

         52.96450000          0.23271430

         16.89757000          0.47019300

          5.79963530          0.35852090

  1  0  1  3  1  1

         15.53961600         -0.11077750          0.07087430

          3.59993360         -0.14802630          0.33975280

          1.01376180          1.13076700          0.72715860

  1  0  1  1  1  1

          0.27000580          1.00000000          1.00000000

  1  2  2  1  1

          0.80000000          1.00000000

  O  6-311++G3df3pd    6-311++G(3df,3pd)

  9

  1  0  0  6  1

       8588.50000000          0.00189515

       1297.23000000          0.01438590

        299.29600000          0.07073200

         87.37710000          0.24000100

         25.67890000          0.59479700

          3.74004000          0.28080200

  1  0  1  3  1  1

         42.11750000          0.11388900          0.03651140

          9.62837000          0.92081100          0.23715300

          2.85332000         -0.00327447          0.81970200

  1  0  1  1  1  1

          0.90566100          1.00000000          1.00000000

  1  0  1  1  1  1

          0.25561100          1.00000000          1.00000000

  1  2  2  1  1

          5.16000000          1.00000000

  1  2  2  1  1

          1.29200000          1.00000000

  1  2  2  1  1

          0.32250000          1.00000000

  1  3  3  1  1

          1.40000000          1.00000000

  1  0  1  1  1  1

          0.08450000          1.00000000          1.00000000

Thursday, 10 February 2011



Basis Set Superposition ErrorBasis Set Superposition Error (BSSE)
BSSE in liquid water
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PseudopotentialsPseudopotentials

21

Outline
Recap of Previous lecture

The Hartree-Fock-Kohn-Sham method
The exchange and correlation hole

Solving the electronic problem in practice

All electrons vs pseudopotentials
Classes of Basis-set
Condensed phase: Bloch’s th and PBC

Marialore Sulpizi Density Functional Theory: from theory to Applications

 Core electrons are eliminated ZV=Z-Zcore 

 Atomic 1s : exp{-Z r} 

 Smooth nodeless pseudo-wfn close to nuclei 

 Bare Coulomb replaced by screened Coulomb

 Inclusion of relativistic effects 

 Transferable 

 Angular dependent potentials:  

      Pt p peaked at 3.9Å 
           s peaked at 2.4Å 
           d peaked at 1.3Å



Generate PseudopotentialsGenerate PP
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Reference

PP

✓
�1

2
r2 + VH[n](r) + Vxc[n](r) + Vnuc(r)

◆
 l(r) = ✏l l(r)

✓
�1

2
r2 + VH[nval](r) + Vxc[nval](r) + V l

pp(r)

◆
 ̃l(r) = ✏l ̃l(r)

Normconserving

Separable: local, nonlocal

Z ��� ̃l(r)
���
2
dr = 1

V
pp

(r) = V
loc

(|r|) +
L

maxX

lm

|plmi⌫lhplm|



GTH PseudopotentialsGTH Pseudopotentials
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 Norm-conserving, separable, dual-space 

 Local PP : short-range and long-range terms

Accurate and 
Transferable 

Scalar 
relativistic 

Few parameters

V PP
loc (r) =

4⇧

i=1

CPP
i

⇤⌃
(2)�PPr

⌅(2i�2)
e�(�PPr)2

� Zion

r
erf

�
�PPr

⇥

 Non-Local PP with Gaussian type projectors

analytically part of ES

�
r | plm

i

⇥
= N l

i Y lm(r̂) r(l+2i�2) e
� 1

2

“
r
rl

”2

Goedeker, Teter, Hutter, PRB 54 (1996), 1703; 
Hartwigsen, Goedeker, Hutter, PRB 58 (1998) 3641

V PP
nl (r, r0) =

X

lm

X

ij

hr|plmi ihl
ijhplmj |r0i



Pseudopotential IntegralsPseudopotential integrals

24

Local PP (SR): 3-center terms

(a+ 1i|c|b) = Hi(a|c|b)

+
1

2(↵+ � + �)
[nia(a� 1i|c|b) + nib(a|c|b� 1i)

+ nic [(a+ 1i|c� 2i|b) + (Ai � Ci)(a|c� 2i|b)]]

(0a|0c|0b) =

✓
↵+ �

↵+ � + �

◆3/2

exp


��

↵+ �

↵+ � + �
(P�C)

2

�
(a|b)

H =
�B+ �C� (� + �)A

↵+ � + �



GTH PP Generation for OGTH PP for O: 6 val. el.

8

&ATOM 

  ELEMENT O 
  RUN_TYPE  PSEUDOPOTENTIAL_OPTIMIZATION 

  ELECTRON_CONFIGURATION  [He] 2s2 2p4 
  CORE [He] 
  MAX_ANGULAR_MOMENTUM 2 

  COULOMB_INTEGRALS ANALYTIC 
  EXCHANGE_INTEGRALS ANALYTIC 

  &METHOD 
     METHOD_TYPE  KOHN-SHAM 
     RELATIVISTIC DKH(2) 
     &XC 
       &XC_FUNCTIONAL PBE0 
       &END XC_FUNCTIONAL 
     &END XC 
  &END METHOD 
  &OPTIMIZATION 
    EPS_SCF 1.e-10 
  &END 
  &PRINT 
    &BASIS_SET 
    &END 
  &END 

  &AE_BASIS 
     BASIS_TYPE GEOMETRICAL_GTO 
  &END AE_BASIS 
  &PP_BASIS 
     BASIS_TYPE GEOMETRICAL_GTO 
  &END PP_BASIS 
  &POTENTIAL 
    PSEUDO_TYPE GTH 
    &GTH_POTENTIAL 
     2    4 
     0.24455430  2 -16.66721480 2.48731132 
     2 
     0.22095592  1  18.33745811 
     0.21133247  0 
    &END GTH_POTENTIAL 
  &END POTENTIAL 

  &POWELL 
     ACCURACY   1.e-10 
     STEP_SIZE  0.5 
     WEIGHT_PSIR0 0.1 
  &END 

&END ATOM 



Pseudopotential LibraryPP Library

9

GTH_POTENTIALS

Nel(s) Nel(p) Nel(d) ...

rPP
loc NC CPP

1 ... CPP
NC

Np

r1 n1
nl {h1

ij}ij=1...n1

r2 n2 {h2
ij}ij=1...n2

C GTH-BLYP-q4
    2    2
     0.33806609    2    -9.13626871     1.42925956
    2
     0.30232223    1     9.66551228
     0.28637912    0
#
N GTH-BLYP-q5
    2    3
     0.28287094    2   -12.73646720     1.95107926
    2
     0.25523449    1    13.67893172
     0.24313253    0

Few parameters

#
Al GTH-PBE-q3
    2    1
     0.45000000    1    -7.55476126
    2
     0.48743529    2     6.95993832    -1.88883584
                                        2.43847659
     0.56218949    1     1.86529857



GPW FunctionalQUICKSTEP
Electronic energy functional

Gaussian and plane waves (GPW) method:

Eelec[n] = ET[n] + EV[n] + EH[n] + EXC[n]

=
 

µ⇥

Pµ⇥⌅⌅µ(r) | �1
2
�2 | ⌅⇥(r)⇧+

 

µ⇥

Pµ⇥⌅⌅µ(r) | VPPloc (r) | ⌅⇥(r)⇧+

 

µ⇥

Pµ⇥⌅⌅µ(r) | VPPnl (r , r ⇤) | ⌅⇥(r ⇤)⇧+

4⇥ �
 

|G|<GC

ñ⇥(G) ñ(G)

G2
+

⌦
ñ(r) ⇤XC[ñ]dr
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GPW FunctionalQUICKSTEP
Pseudo potentials

Goedecker-Teter-Hutter (GTH) pseudo potentials:

Local part:

VPPloc (r) = �Zion
r
erf
�
�PPr
⇥

+
4 

i=1
CPPi
�⌥
2�PPr
⇥2i�2

exp
⇧
�
�
�PPr
⇥2⌃

with �PP =
1⌥
2rPPloc
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GPW FunctionalQUICKSTEP
Pseudo potentials

Non-local part:

VPPnl (r , r �) =
 

lm

 

ij
⌅ r |plmi ⇧hlij ⌅plmj | r � ⇧

with the Gaussian-type projectors

⌅r | plmi ⇧ = Nl
i Y lm(r̂) r l+2i�2 exp

⌥
�1
2

⇤
r
rl

⌅2�
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Matthias Krack (ETH Zurich) CP2K/QUICKSTEP Seminar – Nov. 23, 2006 14 / 43



GPW FunctionalQUICKSTEP
Electronic energy functional

Gaussian and plane waves (GPW) method:

Eelec[n] = ET[n] + EV[n] + EH[n] + EXC[n]

=
 

µ⇥

Pµ⇥⌅⌅µ(r) | �1
2
�2 | ⌅⇥(r)⇧+

 

µ⇥

Pµ⇥⌅⌅µ(r) | VPPloc (r) | ⌅⇥(r)⇧+

 

µ⇥

Pµ⇥⌅⌅µ(r) | VPPnl (r , r ⇤) | ⌅⇥(r ⇤)⇧+

4⇥ �
 

|G|<GC
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Periodic Hartree Potential via FFTCoulomb Potential

P ! ⇢(R)
FFT���! ⇢(G) ! VH(G) =

⇢(G)

G2
FFT���!

| {z }

O(n log n)

VH(R) ! V

⇢(R) =
X

µ⌫

Pµ⌫�µ(R)�⌫(R) =
X

µ⌫

Pµ⌫�̄µ⌫(R)

Vµ⌫ =
X

R

V (R)�µ(R)�⌫(R) =
X

R

V (R)�̄µ⌫(R)

Efficient screening of sums using �̄µ⌫(R).



ScreeningEfficient Calculation of GPW Energy
Screening

• Always work with primitive Gaussians

• Analytic integrals ! distance screening with R = A � B

Overlap S↵� '↵(r � A) $ '�(r � B)

# sparsity pattern

T↵�

• Density on the real space grid
P

↵� P↵�'↵(R)'�(R)
FFT! ⇢̃(G)

# overlap screening

P↵� is only needed with S↵� sparsity pattern

• '↵�(R) 6= 0 distance (radial) screening



ScreeningScreening

• All individual screening thresholds can be controlled by
EPS_DEFAULT

CP2K_INPUT / FORCE_EVAL / DFT / QS

• Problems associated with thresholds

• Failure in Cholesky decomposition of overlap matrix

• Combination of basis set condition number and too big
EPS_DEFAULT

• Inaccurate charge on real space grid

• Too low PW cutoff and/or too big EPS_DEFAULT (extend of
'↵�)



GPW FunctionalGPW Functional

10

Eel[n] =
⌃

µ�

Pµ�

⇥
⇥µ

�����
1
2
⇥2 + V SR

loc + Vnl

���� ⇥�

⇤

+ 2��
⌃

G

ñ�
tot(G)ñtot(G)

G2
+

⌃

R

ñ(R)V XC(R)

=
⌃

µ�

Pµ�

⌅⇥
⇥µ

�����
1
2
⇥2 + V ext

���� ⇥�

⇤
+

⌃

R

V HXC
µ� (R)⇥⇥

µ�(R)

⇧

Linear scaling KS matrix 
construction 



External Potential
External Potential

• Long range part (All electron and pseudopotentials)
Vl(r) = �Z/r r �!1

• Short range part (only pseudopotentials)
(↵|Vnl(r, r

0)|�) = (↵|p)Vp(p|�)

Auxilliary core potential:

Vcore(r) = �Z

r
erf[�r/Rc]

Vcore(r) =
Z

⇢c(r0)
|r� r0|

dr0

⇢c(r) = � Z

R3
c
⇡�3/2 exp[�(r/Rc)2]



External Potential
External Potential

Vl(r) = Vl(r)� Vcore(r) + Vcore(r)

Vl(r) = Vs(r) + Vcore(r)

Special case of pseudopotentials used in Quickstep

Vl(r) = �Z

r
erf[�r/Rc] + (C1 + C2r2 + C3r4) exp[�(r/rcl)

2]

Vl(r) = (C1 + C2r2 + C3r4) exp[�(r/rcl)
2] + Vcore(r)



Hartree Potential
Hartree Potential

Electrostatic energy:

Ees =
1

2

Z Z
⇢(r)⇢(r0)
|r� r0|

drdr0 +
Z

Vcore(r)⇢(r) dr +
1

2

X

A6=B

ZAZB

|RA �RB|

=
1

2

Z Z
⇢(r)⇢(r0)
|r� r0|

drdr0 +
Z Z

⇢c(r)⇢(r)

|r� r0|
drdr0 +

1

2

X

A6=B

ZAZB

|RA �RB|

=
1

2

Z Z
⇢tot(r)⇢tot(r0)

|r� r0|
drdr0 � 1

2

Z Z
⇢c(r)⇢c(r)

|r� r0|
drdr0 +

1

2

X

A6=B

ZAZB

|RA �RB|

=
1

2

Z Z
⇢tot(r)⇢tot(r0)

|r� r0|
drdr0 + Eoverlap � Eself

⇢tot(r) = ⇢(r) + ⇢c(r)



Hartree Potential
Hartree Potential

Ees =
1

2

Z Z
⇢tot(r)⇢tot(r0)

|r� r0|
drdr0

+
1

2

X

A6=B

ZAZB

RAB
erfc


RAB

Rc

�
�

X

A

1p
2⇡

Z2
A

Rc

• Long range term (⇢tot(r))

• Short range pair potential term (erfc)

• Self energy term



Auxiliary Basis SetAuxiliary Basis Set

11

Long range term : Non-local Coulomb

Orthogonal, unbiased, naturally periodic PW basis

EH[ntot] =
1
2

� �
ntot(r)ntot(r�)

|r� r�| drdr�

ñ(r) =
1
�

�

G

ñ(G) eiG·r

EH[ntot] = 2��
�

G

ñ�
tot(G)ñtot(G)

G2

Linear scaling solution of the Poisson equation

Efficient Mapping
FFT

Thursday, 10 February 2011
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Linear scaling solution of the Poisson equation
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Fig. 1. Shown is the rapid convergence of the absolute error in the electrostatic

energy Eq. 11 with respect to plane wave cuto� at fixed density matrix. The system

is a single water molecule described with fairly hard GTH pseudo potentials and a

TZV2P basis in a 10Å cubic cell. The relation Ecuto� = �2

2h2 is used throughout this

work to convert the grid spacing h to the corresponding plane wave cuto�.

infinite. All terms of the electrostatic energy are therefore treated simultane-

ously

EES =
⇥

V PP
loc (r)n(r)dr + 2� �

�

G

ñ�(G) ñ(G)

G2 +
1

2

�

I ⇥=J

ZIZJ

|RI �RJ | (7)

using the Ewald sum method [42] as it is commonly implemented in plane

wave electronic structure codes [6]. The long range part of all electrostatic

interactions is treated in Fourier space, whereas the short range part is treated

in real space. This separation is conveniently achieved for the ionic cores if a

Gaussian charge distribution (nI
c(r)) for each nucleus is introduced and defined

9

H2O, GTH, TZV2P

Electrostatic 
Energy

Efficient Mapping
FFT

Thursday, 10 February 2011



Real-Space Integration
Density collocation

Real Space Integration

12

Finite cutoff and simulation box define a real space grid

n(r) =
�

µ�

Pµ��µ(r)��(r)�
�

µ�

Pµ��̄µ�(R) = n(R)
Screening
Truncation

Thursday, 10 February 2011



Real-Space Integration
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Real Space Integration

12

Finite cutoff and simulation box define a real space grid

n(r) =
�

µ�

Pµ��µ(r)��(r)�
�

µ�

Pµ��̄µ�(R) = n(R)
Real Space Grid

Finite cuto� and computational box define a real space grid {R}

13

n̂(G)� VH(G) =
n̂(G)
G2

� VH(R)

Screening
Truncation

Thursday, 10 February 2011



Real-Space Integration
Density collocation

Real Space Integration

12

Finite cutoff and simulation box define a real space grid

G. Lippert et al, Molecular Physics, 92, 477, 1997

J. VandeVondele et al, Computational Physics Communiation ,167 (2), 103, 2005

n(r) =
�

µ�

Pµ��µ(r)��(r)�
�

µ�

Pµ��̄µ�(R) = n(R)

n(R) → ∇n(R)

vXC [n](r) → VXC(R) =
∂ϵxc

∂n
(R)

Hµν
HXC = ⟨µ|VHXC(r)|ν⟩ →

∑

R

VHXC(R)ϕ′

µν(R)

Numerical approximation of the gradient

XC evaluated on the grid

Real space integration

Real Space Grid

Finite cuto� and computational box define a real space grid {R}

13

n̂(G)� VH(G) =
n̂(G)
G2

� VH(R)

Screening
Truncation

Thursday, 10 February 2011



Energy RipplesEnergy Ripples 

13

Low density region can induce unphysical behavior of terms such
|�n|2

n�

Small variations of the total energy as 
atoms move relative to the grid

108 J. VandeVondele et al. / Computer Physics Communications 167 (2005) 103–128

(7) calculation of the matrix element of vxcτ between

the Gaussians

(16)

∫
vxcτ (r)∇ϕµ(r) · ∇ϕν(r)dr,

where the grid based collocation, integration and con-

sistent differentiation are discussed in more detail in

Sections 3.1 and 4.3.1.

The presence of terms such as

(17)t = − |∇n|2
nα

,
∂t

∂|∇n| = −2 |∇n|
nα

in GGAs and meta-GGAs leads to very sensitive be-

haviour in regions of vanishing density such as the tails

of the atomic densities. The near singularities encoun-

tered in Eq. (17) are in that case customarily resolved

by removing the contributions to exc and vxc of the

regions where the density n is lower than a given cut-

off ϵ. In addition, care should be taken to fulfil numeri-

cally the exact relationship |∇n| < 8nτ for functionals

that depend on the kinetic energy density. However,

using pseudopotentials, the density can also be small

in the core region, where gradients are typically larger.

This is especially true for the GTH pseudopotentials

that by construction have a zero pseudocharge den-

sity at the core for all elements apart from H. We

illustrate in Fig. 2 that for these pseudopotentials the

core region is by far the most problematic part of the

exchange and correlation potential. The pronounced

spike of vxc at the core gives rise to small varia-

tions in the total energy as atoms move relative to the

grid.

The G space differentiation is commonly used in

plane waves codes but is not the best choice with the

GPW method. Whereas G space differentiation of the

density on the grid yields the exact derivative ∇n(r)

in the former case, the approximate ∇ñ(r) is obtained

in the later case. When used, the differentiation of a

small spike of ∂e/∂|∇n| in (13) gives rise to the strong
‘ringing’ effects illustrated in Fig. 2. Even though in-

tegration effectively filters out the highest frequencies,

the energy oscillates significantly when the system is

translated (see panel (b) of Fig. 3).

We have explored different schemes to compute

the exchange and correlation energy more accurately,

and to describe them we introduce a nearest neighbour

smoothing operator Sq defined as

(Sq f )i,j,k

= q3

q3 + 6q2 + 12q + 8

(18)

×
1∑

l=−1

1∑

m=−1

1∑

n=−1
q−|l|−|m|−|n|fi+l,j+m,k+n,

Fig. 2. Behaviour of n and vxc with the BLYP functional close to the core of an O atom in a water molecule along the bisector of the HOH

angle with an unusually large cutoff of 5000 Ry. The left panel shows the electron density, whereas the three right panels show vxc as calculated

using a derivative in G space, using a quadratic spline (D6(S6)−1) and using the operators S10–D6 as defined in the text. It can be observed

that the latter methods lead to a more physical exchange and correlation potential surface.

H2O, BLYP

close to O along HOH bisector

Thursday, 10 February 2011



MultigridsMultiple Grids

14

Integration

For the integartion of
a Gaussian function
with exponent 1 an ac-
curacy of 10�10 re-
quires an integration
range of 10 bohr, a
cuto� of 25 Rydberg,
resulting in 22 integra-
tion points.

⇥ 5000 integration points/integral batch
15

the exponent of Gaussian product selects the grid 

number of grid points is exponent-independent 

Exponent = 1

⇥2
p = 1/2�p

Ei
cut =

E1
cut

�(i�1)
, i = 1..N

Accuracy
=> Relative Cutoff

~30 Ry

Thursday, 10 February 2011



MultigridsMultiple Grids
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Integration

For the integartion of
a Gaussian function
with exponent 1 an ac-
curacy of 10�10 re-
quires an integration
range of 10 bohr, a
cuto� of 25 Rydberg,
resulting in 22 integra-
tion points.

⇥ 5000 integration points/integral batch
15

the exponent of Gaussian product selects the grid 

number of grid points is exponent-independent 

Exponent = 1

⇥2
p = 1/2�p

Multiple Grids

16

nf
j = Ij(nc

i )

Multiple Grids

16

Exponents

0       2      4       6       8

Number of pairs
70000

50000

30000

10000

Ei
cut =

E1
cut

�(i�1)
, i = 1..N

Accuracy
=> Relative Cutoff

~30 Ry
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CP2K DFT InputCP2K DFT input

11

&FORCE_EVAL 
 METHOD Quickstep 

 &DFT  
    BASIS_SET_FILE_NAME  GTH_BASIS_SETS 
    POTENTIAL_FILE_NAME GTH_POTENTIALS 
    LSD F 
    MULTIPLICITY 1 
    CHARGE 0 
    &MGRID 
       CUTOFF 300 
       REL_CUTOFF 50 
    &END MGRID 
    &QS  
      EPS_DEFAULT 1.0E-10 
    &END QS 
    &SCF 
      MAX_SCF    50 
      EPS_SCF    2.00E-06 
      SCF_GUESS  ATOMIC 
    &END SCF 
    &XC 
      &XC_FUNCTIONAL 
        &PBE 
        &END PBE 
      &END XC_FUNCTIONAL 

      &XC_GRID 
        XC_DERIV SPLINE2_smooth 
        XC_SMOOTH_RHO NN10 
      &END XC_GRID 
  &END XC 
 &END DFT 

 &SUBSYS 
   &CELL 
      PERIODIC XYZ 
      ABC 8. 8. 8. 
    &END CELL 
    &COORD 
    O   0.000000    0.000000   -0.065587 
    H   0.000000   -0.757136    0.520545 
    H   0.000000    0.757136    0.520545 
    &END COORD 
    &KIND H 
      BASIS_SET DZVP-GTH-PBE 
      POTENTIAL GTH-PBE-q1 
    &END KIND 
    &KIND O 
      BASIS_SET DZVP-GTH-PBE 
      POTENTIAL GTH-PBE-q6 
    &END KIND 
  &END SUBSYS 
&END FORCE_EVAL



Hard & Soft DensitiesHard and Soft Densities

12

Formaldehyde

  Pseudopotential  ➯ frozen core  

 Augmented PW ➯  separate regions (matching at edges)    
LAPW, LMTO (OK Andersen, PRB 12, 3060 (1975) 

 Dual representation ➯ localized orbitals and PW                              
PAW (PE Bloechl, PRB, 50, 17953 (1994))



Partitioning of the DensityPartitioning of the Density

18

A

A

A

A
I

−

∑

A

ñAn = ñ +
∑

A

nA
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Partitioning of the DensityPartitioning of the Density

18

A

A

A

A
I

⎬
⎫
⎭

⎬
⎫
⎭

r ∈ I

r ∈ A

n(r) − ñ(r) = 0

nA(r) − ñA(r) = 0

n(r) − nA(r) = 0

ñ(r) − ñA(r) = 0

−

∑

A

ñAn = ñ +
∑

A

nA
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Partitioning of the DensityPartitioning of the Density

18

Gaussian Augmented Plane Waves

A

A

A

A
I

ñ(r) =
∑

µν

Pµνϕ̃µϕ̃ν →

∑

G

n̂(G)eiG·R
nA(r) =

∑

µν

PµνχA
µ χA

ν

⎬
⎫
⎭

⎬
⎫
⎭

r ∈ I

r ∈ A

n(r) − ñ(r) = 0

nA(r) − ñA(r) = 0

n(r) − nA(r) = 0

ñ(r) − ñA(r) = 0

−

∑

A

ñAn = ñ +
∑

A

nA
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Density Dependent Terms: XCDensity Dependent Terms:  XC

20

A

∇n(r) = ∇ñ(r) +
∑

A

∇nA(r) −
∑

A

∇ñA(r)Gradient:

Semi-local functional like local density approximation, generalized 
gradient approximation or meta-functionals

E[n] =

∫

Vloc(r)n(r) =

∫

{

Ṽloc(r) +
∑

A

V
A
loc(r) −

∑

A

Ṽ
A
loc(r)

}

×

{

ñ(r) +
∑

A

nA(r) −
∑

A

ñA(r)

}

dr
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Density Dependent Terms: XCDensity Dependent Terms:  XC

20

A

=

∫

{

Ṽloc(r)ñ(r) +
∑

A

V
A
loc(r)nA(r) −

∑

A

Ṽ
A
loc(r)ñA(r)

}

∇n(r) = ∇ñ(r) +
∑

A

∇nA(r) −
∑

A

∇ñA(r)Gradient:

Semi-local functional like local density approximation, generalized 
gradient approximation or meta-functionals

E[n] =

∫

Vloc(r)n(r) =

∫

{

Ṽloc(r) +
∑

A

V
A
loc(r) −

∑

A

Ṽ
A
loc(r)

}

×

{

ñ(r) +
∑

A

nA(r) −
∑

A

ñA(r)

}

dr
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Density Dependent Terms: ESDensity Dependent Terms:  ES

21

A

Non local Coulomb operator

n
0(r) =

∑

A

n
0
A(r) =

∑

A

{

∑

L

QL
A gL

A(r)

}

QL
A =

∫

{

nA(r) − ñA(r) + nZ
A(r)

}

rlYlm(θφ)r2dr sin(θ)dθdφ

Same multipole expansion as 

the local densities

Compensation 

charge

V [ñ + n
0] +

∑

A

V [nA + n
Z
A] −

∑

A

V [ñA + n
0

A]
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Density Dependent Terms: ESDensity Dependent Terms:  ES

21

A

Non local Coulomb operator

n
0(r) =

∑

A

n
0
A(r) =

∑

A

{

∑

L

QL
A gL

A(r)

}

QL
A =

∫

{

nA(r) − ñA(r) + nZ
A(r)

}

rlYlm(θφ)r2dr sin(θ)dθdφ

Same multipole expansion as 

the local densities

Compensation 

charge

V [ñ + n
0] +

∑

A

V [nA + n
Z
A] −

∑

A

V [ñA + n
0

A]

Interstitial region
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Density Dependent Terms: ESDensity Dependent Terms:  ES

21

A

Non local Coulomb operator

n
0(r) =

∑

A

n
0
A(r) =

∑

A

{

∑

L

QL
A gL

A(r)

}

QL
A =

∫

{

nA(r) − ñA(r) + nZ
A(r)

}

rlYlm(θφ)r2dr sin(θ)dθdφ

Same multipole expansion as 

the local densities

Compensation 

charge

V [ñ + n
0] +

∑

A

V [nA + n
Z
A] −

∑

A

V [ñA + n
0

A]

Atomic region
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GAPW FunctionalsGAPW Functionals

22

Exc[n] = Exc[ñ] +
∑

A

Exc[nA] −
∑

A

Exc[ñA]

EH [n + n
Z ] = EH [ñ + n

0] +
∑

A

EH [nA + n
Z
A] −

∑

A

EH [ñA + n
0]
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GAPW FunctionalsGAPW Functionals

22

on global grids
via collocation + FFT

Analytic integrals
Local Spherical Grids

Lippert et al., Theor. Chem. Acc. 103, 124 (1999); 

Krack et al, PCCP,  2, 2105 (2000)

Iannuzzi, Chassaing, Hutter, Chimia (2005); 

VandeVondele , Iannuzzi, Hutter, CSCM2005 proceedings

Exc[n] = Exc[ñ] +
∑

A

Exc[nA] −
∑

A

Exc[ñA]

EH [n + n
Z ] = EH [ñ + n

0] +
∑

A

EH [nA + n
Z
A] −

∑

A

EH [ñA + n
0]
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GAPW InputGAPW Input

19

    &QS 
      EXTRAPOLATION ASPC 
      EXTRAPOLATION_ORDER 4 
      EPS_DEFAULT 1.0E-12 
      METHOD GAPW  
      EPS_DEFAULT 1.0E-12 
      QUADRATURE   GC_LOG 
      EPSFIT       1.E-4 
      EPSISO       1.0E-12 
      EPSRHO0      1.E-8 
      LMAXN0       4 
      LMAXN1       6 
      ALPHA0_H     10 
   &END QS

    &KIND O 
      BASIS_SET DZVP-MOLOPT-GTH-q6 
      POTENTIAL GTH-BLYP-q6 
      LEBEDEV_GRID 80 
      RADIAL_GRID 200 
    &END KIND 
    &KIND O1 
      ELEMENT O 
#      BASIS_SET 6-311++G2d2p 
      BASIS_SET 6-311G** 
      POTENTIAL ALL 
      LEBEDEV_GRID 80 
      RADIAL_GRID 200 
    &END KIND

&DFT 
   … 

&END DFT 

&SUBSYS 
   … 

&END SUBSYS 



All-Electron CalculationsAll-electron Calculations:CP2K vs G03
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All-Electron CalculationsAll-electron Calculations:CP2K vs G03
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Energy Functional MinimizationEnergy Functional Minimisation

21

Standard: Diagonalisation + mixing (DIIS, Pulay, J. Comput. Chem. 3, 
556,(1982); iterative diag. Kresse G. et al, PRB, 54(16), 11169, (1996) )  

Direct optimisation: Orbital rotations (maximally localised 
Wannier functions) 

Linear scaling methods: Efficiency depends on sparsity of P ( S. 
Goedecker, Rev. Mod. Phys. 71, 1085,(1999))

P(r, r⇥) � e�c
⇥

Egap|r�r�|

Example: DNA Crystal

2388 atoms, 3960 orbitals, 38688 BSF (TZV(2d,2p))
density matrix, overlap matrix

28

P

S
Pµ� =

�

pq

S�1
µp S�1

q�

⇥⇥
�p(r)P(r, r�)�q(r⇥)drdr⇥

C� = arg min
C

�
E(C) : CT SC = 1

⇥



Orbital Transformation MethodOrbital Transformation Method

26
VandeVondele et al, JCP, 118, 4365 (2003)

Introduce auxiliary, linearly constrained  variables  to parametrize the 

occupied subspace

C†SC = I
Linear constraint

C(X) = C0 cos(U) + XU�1 sin(U) U = (X†SX)1/2

XSC0 = 0
not linear orthonormality constraint

minimization in the auxiliary tangent space, 

idempotency verified

�E(C(X)) + Tr(X†SC0�)
�X

=
�E

�C

�C
�X

+ SC0�

Preconditioned gradients

P(H� S�)X�X ⇥ 0 X�
⇥

PX
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Orbital Transformation MethodOrbital Transformation Method

26
VandeVondele et al, JCP, 118, 4365 (2003)

Introduce auxiliary, linearly constrained  variables  to parametrize the 

occupied subspace

C†SC = I
Linear constraint

C(X) = C0 cos(U) + XU�1 sin(U) U = (X†SX)1/2

XSC0 = 0
not linear orthonormality constraint

minimization in the auxiliary tangent space, 

idempotency verified

�E(C(X)) + Tr(X†SC0�)
�X

=
�E

�C

�C
�X

+ SC0�

Preconditioned gradients

P(H� S�)X�X ⇥ 0 X�
⇥

PX

Guaranteed convergence 

Various choices of preconditioners 

Limited number of SCF iterations 

KS diagonalization avoided 

Sparsity of S and H can be 

exploited 

Scaling O(N2M) in cpu and O(NM) 

in memory

Optimal for large system, high 

quality basis set
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OT Method PerformanceOT Performance

22

Refined preconditioner, most effective during MD of large systems with well 
conditioned basis sets 

  

But OT is hard to beat !

Improved Single Inverse 
Preconditioner

Preconditioner Solver based on 
an inverse update.

Refined preconditioner, most effective during MD of large systems with well conditioned 
basis sets

Schiffmann, VandeVondele, JCP 142 244117 (2015) 
Schiffmann, VandeVondele, JCP 142 244117 (2015)  

on Daint (XC30) 

 3844 nodes  

(8 cores + 1 GPU) 



OT Method InputOT  input

23

    &SCF                                  
      EPS_SCF     1.01E-07 
      &OUTER_SCF                                             
        MAX_SCF 20                    
        EPS_SCF     1.01E-07 
      &END OUTER_SCF                      
      SCF_GUESS RESTART 
      MAX_SCF 20 
      &OT                                 
        MINIMIZER DIIS 
        PRECONDITIONER FULL_ALL 
      &END OT 
    &END SCF 



Iterative RefinementIterative Refinement

28

V. Weber et al, JCP, 128, 084113, 2008

Approximate Löwdin 

factorization

Includes only matrix additions and multiplications

Simplifies parallelization and use sparsity

unconstrained functional minimization

approximate constraint function fn

Thursday, 10 February 2011



Direct MinimizationDirect Minimization

29

Input matrices

  

Gradient

  

Line search to minimize

  

loop 
over i

Apply the preconditioner

  

CG : Polak-Ribiere

  

check 
convergence

iterate refinement until  

Thursday, 10 February 2011



Dye-Sensitized Solar CellsDye Sensitized Solar Cell

47

F. Schiffmann et al., PNAS 107 4830 (2010)

In situ electronic spectroscopy and dynamics

 1751 atom computational cell, 864  
(TiO2),  60 dye+electrolyte, 828 solvent  

  9346 electrons, 22951 basis functions  

 MD simulation using PBE (DFT+U)  

 CPU time on 1024 cores Cray-XT5  

 SCF iteration: 13.7 seconds  

 MD time step: 164 seconds

rithms. On the highest level, parallel algorithms are based on message passing
with the MPI and suitable for distributed memory architectures. This level is
important, and requires careful design of data structures and algorithms. In-
creasingly, MPI level parallelism has been augmented with shared memory par-
allelism based on threading and programmed using OpenMP directives. This
combination becomes more and more important as the core count per node in-
creases, and top-level computers feature 100’000 and more cores. Ongoing work
aims at porting the main algorithms of cp2k to accelerators and GPUs, as
these energy e�cient devices become more standard in supercomputers. At the
lowest level, auto-generated and auto-tuned code allows for generating CPU-
specific libraries that deliver good performance without a need for dedicated
code development.

5 Reference Applications

5.1 Dye Sensitized Solar Cells (DSSC)

Figure 1: Snapshot of a DFT based simulation of the an intermediate dye-iodide
complex attached to the TiO2 surface. The iodide-surface distance coincides
with the maximum concentration of ions found in classical molecular dynamics
simulations of the electrolyte near surface.

One application demonstrating the potential of cp2k for simulating complex
systems is a study of the active interface in dye sensitized solar cells. In these
devices the redox active region consists of a dye attached to a semiconductor

9

dye-iodide complex attached to TiO2



Linear-Scaling DFTLinear Scaling SCF

48
VandeVondele, Borstnik, Hutter; JCTC 10, 3566 (2012)

  

Linear Scaling SCF in CP2K

22nm 22nm

2
2
n
m

4
n
m

Traditional approaches to solve the self-
consistent field (SCF) equations are O(N3) 
limiting system size significantly.

A newly implemented algorithm is O(N), 
allowing for far larger systems to be studied.

New regime: small devices, heterostructures,
interfaces, nano-particles, a small virus.

Largest O(N3) calculation with CP2K 
(~6000 atoms)

Largest O(N) calculation with CP2K
(~1'000'000 atoms)

VandeVondele J; Borstnik U; Hutter J; 2012, Linear scaling self-consistent field calculations for millions of atoms in the condensed phase. JCTC 10: 3566 (2012)

 Based on sparse matrix matrix 
multiplications  

!

!

 Self consistent solution by mixing 

!

!

 Chemical potential by bisecting until 

P =
1

2

�
I � sign

�
S�1H � µI

��
S�1

Hn+1(Pn+1)

Ĥn+1 = (1� ↵)Ĥn � ↵Hn+1

µn+1 : |trace(Pn+1S)�Nel| < 1/2



Sparse Matrix LibrarySparse Matrix Library

49
Borstnik, et al; submitted

DBCSR: Distributed Blocked Compressed Sparse Row

 For massively parallel architectures 

 Optimised for 10000s of non-zeros per row (dense limit) 

 Stored in block form : atoms or molecules 

 Cannons algorithm: 2D layout (rows/columns) and 2D distribution of data 

 Homogenised for load balance 

!

!

!

  

DBCSR: a sparse matrix library
Distributed Blocked Compressed Sparse Row
Distributed Blocked Cannon Sparse Recursive

Cannon style communication 
on a homogenized matrix for 
strong scaling

Borstnik et al. : submitted 

Optimized for the science case: 10000s of non-zeros per row.
The dense limit as important as the sparse limit.

given processor communicates only with nearest neighbours

transferred data decreases as number of processors increases



Millions of AtomsMillions of atoms

50

  

Millions of atoms 
in the condensed phase

Bulk liquid water.  Dashed lines represent ideal linear scaling. 

Minimal basis sets:
DFT, NDDO, DFTB

Accurate basis sets, DFT

46656 cores

9216 cores

The electronic structure
O(106) atoms in < 2 hours

VandeVondele, Borstnik, Hutter, JCTC, DOI: 10.1021/ct200897x 



Traditional DiagonalizationTraditional Diagonalisation

45

Eigensolver from standard parallel program library: SCALAPACK

KC = SC�

DIIS for SCF convergence 
acceleration: few iterations e = KPS� SPK

error matrix

scaling (O(M3)) and stability problems

Diagonalisation of K’ and back transformation of 
MO coefficients (occupied only (20%))

KC = UT UC� �
�
(UT )�1KU�1

⇥
C⇥ = C⇥�

Cholesky decomposition

Transformation into a standard eigenvalues problem

S = UTU C0 = UC



Metallic Electronic StructureMetallic Electronic Structure

24

Eband =
�

n

1
⇥BZ

⇥

BZ
�nk�(�nk � Ef )d3k ⇥

�

n

�

k

wk�nk�(�nk � Ef )d3k

Rh band structure

Ef

Ef

CKS and !KS needed

charge sloshing and exceedingly slow convergence

 Wavefunction must be orthogonal to unoccupied bands close in energy 

 Discontinuous occupancies generate instability (large variations in n(r)) 

 Integration over k-points and iterative diagonalisation schemes



Smearing & Mixing in G-SpaceSmearing & Mixing in G-space

47

F (T ) = E �
�

n

kBTS(fn)

Mermin functional: minimise the free energy

S(fn) = �[fn ln fn + (1� fn) ln(1� fn)]

Any smooth operator that allows accurate S(fn)  to recover the T=0 result

fn

⇤
�n � Ef

kT

⌅
=

1

exp
�

�n�Ef

kBT

⇥
+ 1

Fermi-Dirac

Trial density mixed with previous densities: damping oscillations

ninp
m+1 = ninp

m +GIR[ninp
m ] +

m�1X

i=1

↵i

�
�ni +GI�Ri

�

R[ninp] = nout[ninp]� ninp

residual
minimise the residual 
G preconditioning matrix damping low G



Iterative Improvement of n(r)Iterative Improvement of the the n(r)

27

Input density matrix 
  

Update of KS Hamiltonian

diagonalization plus iterative refinement 

Calculation of Fermi energy and occupations 

New density matrix

Check convergence

Density mixing

CPU Time

Time[s]/SCF cycle on 256 CPUs IBM Power 5 : 116.2

Pin
↵� ! nin(r)

Cn "n

Ef fn

Pout

↵� ! nout(r)

max

�
Pout

↵� �Pin

↵�

 

nout nin nh . . . ! nnew

Pout

↵� nnew(r)



Rhodium: Bulk & SurfaceRhodium: Bulk and Surface

28

E-Ef [eV]
-8 -4 0 4 8

DZVP

DZVP

SZVP

SZV

Q9

Q17

Rh(111) d-projected 
LDOSRhodium: Bulk and Surface

d-projected LDOS

Basis PP a0 [Å] B[GPa] Es[eV/Å2] Wf [eV]

3s2p2df 17e 3.80 258.3 0.186 5.11
2s2p2df 9e 3.83 242.6 0.172 5.14
2sp2d 9e 3.85 230.2 0.167 5.20
spd 9e 3.87 224.4 0.164 5.15

Minimal model for Rh(111) surface:
4 layer slab, 576 Rh atoms, 5184 electrons, 8640 basis function

Bulk: 4x4x4

Surface: 6x6 7 layers

Diaz, et al. Theo Chem Acc (2013).
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576 Cu, nao=14400, Nelect.=6336, k of eigen-pairs=3768

nprocs syevd syevr Cholesky
32 106 (49%) 72 (40%) 38 (21%)
64 69 (46%) 48 (37%) 34 (26%)
128 41 (41%) 29 (34%) 23 (28%)
256 35 (41%) 26 (34%) 24 (32%)

Syevd: D&C
Syevr: MRRR
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Algorithmic paths for eigenproblems III
Problems with this approach:

A T λ

tridiagonal form

transform

q
A

(   ,q  )
T

BisInvIt

QR too slow

slow, not robust

scalingD & C

MRRR

compute

eigenvalues and

−vectors of T

eigenvectors

reduction to

one half BLAS 2

scaling

not partial

not robust enough

Eigenvalue Solvers—The ELPA Project and Beyond, Bruno Lang 9/31

Transformation to tridiagonal form based on around 50%
BLAS-2 operations.
Eigen-decomposition of T traditionally done with routines
such as bisection and inverse iterations.
Divide-and-conquer-based method (D&C)
Multiple relatively robust representations method (MRRR)

Parallel performance depends on data locality and scalability

ScaLAPACK need improvements in numerical stability, parallel
scalability, and memory bandwidth limitations
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All electron electronic structure calculation with FHI-aims:
polyalanine peptide

avoiding system-specific complications such as the exact form of the eigenspectrum, or the choice of an optimal precondi-
tioning strategy [11,9]. Even for (i)–(iii), though, a conventional diagonalization of some kind may still be required or is a
necessary fallback.

In general, the solution of (1) proceeds in five steps: (A) Transformation to a dense standard eigenproblem (e.g., by Chole-
sky decomposition of S), HKScl = !lScl [ AqA = kqA, k ! !l; (B) Reduction to tridiagonal form, A [ T; (C) Solution of the tridi-
agonal problem for k eigenvalues and vectors, TqT = kqT; (D) Back transformation of k eigenvectors to dense orthonormal
form, qT [ qA; (E) Back transformation to the original, non-orthonormal basis, qA [ cl. Fig. 1 shows the overall timings of
these operations on a massively parallel IBM BlueGene/P system, for one specific example: the electronic structure of a
1003-atom polyalanine peptide (small protein) conformation in an artificially chosen, fixed a-helical geometry. The example
is set up using the ‘‘Fritz Haber Institute ab initio molecular simulations’’ (FHI-aims) all-electron electronic structure package
[8,32], at essentially converged basis set accuracy for DFT (tier 2 [8]). For (1), this means n = 27,069. The number of calculated
eigenpairs is k = 3410, somewhat more than the theoretical minimum kmin = 1905, one state per two electrons. Steps (A)–(E)
were performed using only subroutine calls as in the ScaLAPACK [33] library where available, as implemented in IBM’s sys-
tem-specific ESSL library, combined as described briefly in [8, Section 4.2]. The reason is that ScaLAPACK or its interfaces are
widely used for (massively) parallel linear algebra and readily available; no claim as to whether our use is the best or only
possible alternative is implied. ScaLAPACK provides the driver routine pdsyevd, which calls pdsytrd, pdstedc, and
pdormtr for tridiagonalization, solution of the tridiagonal eigenproblem and back transformation respectively. pdstedc
is based on the divide-and-conquer (D&C) algorithm, tridiagonalization and back transformation are done using Householder
transformations and blocked versions thereof [34,35]. The back transformation was done only for the needed eigenvectors.

Our point here are some key conclusions, in agreement with reports in the wider literature [12,6,36]. What is most appar-
ent from Fig. 1 is that even for this large electronic structure problem, the calculation does not scale beyond 1024 cores, thus
limiting the performance of any full electronic structure calculation with more processors. By timing steps (A)–(E) individ-
ually, it is obvious that (B) the reduction to tridiagonal form, and then (C) the solution of the tridiagonal problem using the
D&C approach dominate the calculation, and prevent further scaling. For (B), the main reason is that the underlying House-
holder transformations involve matrix–vector operations (use of BLAS-2 subroutines and unfavorable communication pat-
tern); the magnitude of (C) is more surprising (see below). By contrast, the matrix multiplication-based transformations
(A), (D), and (E) either still scale or take only a small fraction of the overall time.

In the present paper, we assume that step (A) already has been completed, and step (E) will not be considered, either. We
present a new parallel implementation based on the two-step band reduction of Bischof et al. [37] concerning step (B), tri-
diagonalization; Section 2.1, with improvements mainly for step (D), back transformation; Section 2.2. We also extend the
D&C algorithm, thus speeding up step (C); Section 3. Some additional optimization steps in the algorithmic parts not specif-
ically discussed here (reduction to banded form, optimized one-step reduction to tridiagonal form, and corresponding back
transformations) will be published as part of an overall implementation in [38]. These routines are also included in recent
production versions of FHI-aims. For simplicity we will present only the real symmetric case; the complex Hermitian case is
similar.

In addition to synthetic testcases, we show benchmarks for two large, real-world problems from all-electron electronic
structure theory: first, the n = 27,069, k = 3410 polyalanine case of Fig. 1, which will be referred to as Poly27069 problem
in the following, and second, an n = 67,990 generalized eigenproblem arising from a periodic Pt (100)-‘‘(5 " 40)’’, large-scale
reconstructed surface calculation with 1046 heavy-element atoms, as needed in [39]. In the latter calculation, the large frac-
tion of core electrons for Pt (atomic number Z = 78) makes for a much higher ratio of needed eigenstates to overall basis size,
k = 43,409 # 64%, than in the polyalanine case, even though the basis set used is similarly well converged. This problem will
be referred to as Pt67990. Benchmarks are performed on two distinct computer systems: The IBM BlueGene/P machine
‘‘genius’’ used in Fig. 1, and a Sun Microsystems-built, Infiniband-connected Intel Xeon (Nehalem) cluster with individual
eight-core nodes. We note that for all standard ScaLAPACK or PBLAS calls, i.e., those parts not implemented by ourselves,
the optimized ScaLAPACK-like implementations by IBM (ESSL) or Intel (MKL) were employed.

Fig. 1. Left: Segment of the a-helical polyalanine molecule Ala100 as described in the text. Right: Timings for the five steps (A): reduction to standard
eigenproblem, (B): tridiagonalization, (C): solution of the tridiagonal problem, and back transformation of eigenvectors to the full standard problem (D) and
the generalized problem (E), of a complete eigenvalue/-vector solution for this molecule, n = 27,069, k = 3410, as a function of the number of processor
cores. The calculation was performed on an IBM BlueGene/P system, using a completely ScaLAPACK-based implementation. Step (C) was performed using
the divide-and-conquer method.

T. Auckenthaler et al. / Parallel Computing 37 (2011) 783–794 785

Tridiagonalization

Solution
Cho. 1

Cho. 2
Back trans.

1003 atoms
3410 MOS
27069 BSf

on IBM BGP with ESSL: pdsyevd
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avoiding system-specific complications such as the exact form of the eigenspectrum, or the choice of an optimal precondi-
tioning strategy [11,9]. Even for (i)–(iii), though, a conventional diagonalization of some kind may still be required or is a
necessary fallback.

In general, the solution of (1) proceeds in five steps: (A) Transformation to a dense standard eigenproblem (e.g., by Chole-
sky decomposition of S), HKScl = !lScl [ AqA = kqA, k ! !l; (B) Reduction to tridiagonal form, A [ T; (C) Solution of the tridi-
agonal problem for k eigenvalues and vectors, TqT = kqT; (D) Back transformation of k eigenvectors to dense orthonormal
form, qT [ qA; (E) Back transformation to the original, non-orthonormal basis, qA [ cl. Fig. 1 shows the overall timings of
these operations on a massively parallel IBM BlueGene/P system, for one specific example: the electronic structure of a
1003-atom polyalanine peptide (small protein) conformation in an artificially chosen, fixed a-helical geometry. The example
is set up using the ‘‘Fritz Haber Institute ab initio molecular simulations’’ (FHI-aims) all-electron electronic structure package
[8,32], at essentially converged basis set accuracy for DFT (tier 2 [8]). For (1), this means n = 27,069. The number of calculated
eigenpairs is k = 3410, somewhat more than the theoretical minimum kmin = 1905, one state per two electrons. Steps (A)–(E)
were performed using only subroutine calls as in the ScaLAPACK [33] library where available, as implemented in IBM’s sys-
tem-specific ESSL library, combined as described briefly in [8, Section 4.2]. The reason is that ScaLAPACK or its interfaces are
widely used for (massively) parallel linear algebra and readily available; no claim as to whether our use is the best or only
possible alternative is implied. ScaLAPACK provides the driver routine pdsyevd, which calls pdsytrd, pdstedc, and
pdormtr for tridiagonalization, solution of the tridiagonal eigenproblem and back transformation respectively. pdstedc
is based on the divide-and-conquer (D&C) algorithm, tridiagonalization and back transformation are done using Householder
transformations and blocked versions thereof [34,35]. The back transformation was done only for the needed eigenvectors.

Our point here are some key conclusions, in agreement with reports in the wider literature [12,6,36]. What is most appar-
ent from Fig. 1 is that even for this large electronic structure problem, the calculation does not scale beyond 1024 cores, thus
limiting the performance of any full electronic structure calculation with more processors. By timing steps (A)–(E) individ-
ually, it is obvious that (B) the reduction to tridiagonal form, and then (C) the solution of the tridiagonal problem using the
D&C approach dominate the calculation, and prevent further scaling. For (B), the main reason is that the underlying House-
holder transformations involve matrix–vector operations (use of BLAS-2 subroutines and unfavorable communication pat-
tern); the magnitude of (C) is more surprising (see below). By contrast, the matrix multiplication-based transformations
(A), (D), and (E) either still scale or take only a small fraction of the overall time.

In the present paper, we assume that step (A) already has been completed, and step (E) will not be considered, either. We
present a new parallel implementation based on the two-step band reduction of Bischof et al. [37] concerning step (B), tri-
diagonalization; Section 2.1, with improvements mainly for step (D), back transformation; Section 2.2. We also extend the
D&C algorithm, thus speeding up step (C); Section 3. Some additional optimization steps in the algorithmic parts not specif-
ically discussed here (reduction to banded form, optimized one-step reduction to tridiagonal form, and corresponding back
transformations) will be published as part of an overall implementation in [38]. These routines are also included in recent
production versions of FHI-aims. For simplicity we will present only the real symmetric case; the complex Hermitian case is
similar.

In addition to synthetic testcases, we show benchmarks for two large, real-world problems from all-electron electronic
structure theory: first, the n = 27,069, k = 3410 polyalanine case of Fig. 1, which will be referred to as Poly27069 problem
in the following, and second, an n = 67,990 generalized eigenproblem arising from a periodic Pt (100)-‘‘(5 " 40)’’, large-scale
reconstructed surface calculation with 1046 heavy-element atoms, as needed in [39]. In the latter calculation, the large frac-
tion of core electrons for Pt (atomic number Z = 78) makes for a much higher ratio of needed eigenstates to overall basis size,
k = 43,409 # 64%, than in the polyalanine case, even though the basis set used is similarly well converged. This problem will
be referred to as Pt67990. Benchmarks are performed on two distinct computer systems: The IBM BlueGene/P machine
‘‘genius’’ used in Fig. 1, and a Sun Microsystems-built, Infiniband-connected Intel Xeon (Nehalem) cluster with individual
eight-core nodes. We note that for all standard ScaLAPACK or PBLAS calls, i.e., those parts not implemented by ourselves,
the optimized ScaLAPACK-like implementations by IBM (ESSL) or Intel (MKL) were employed.

Fig. 1. Left: Segment of the a-helical polyalanine molecule Ala100 as described in the text. Right: Timings for the five steps (A): reduction to standard
eigenproblem, (B): tridiagonalization, (C): solution of the tridiagonal problem, and back transformation of eigenvectors to the full standard problem (D) and
the generalized problem (E), of a complete eigenvalue/-vector solution for this molecule, n = 27,069, k = 3410, as a function of the number of processor
cores. The calculation was performed on an IBM BlueGene/P system, using a completely ScaLAPACK-based implementation. Step (C) was performed using
the divide-and-conquer method.
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Improvements with ELPA V
Two-step reduction II: banded ! tridiagonal:

A T λ
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partial
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complex

better scaling

higher per−node perf

+ Extended to complex
+ Improved parallelization
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Reduction to band form by blocked orthogonal transformations

Tridiagonalization by n� 2 stages of a bulge-chasing algorithm

Optimized kernel for non-blocked Householder transformations

D&C for partial eigensystem

Perspective: MRRR based tridiagonal eigensolver; hybrid
openMP/MPI version
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CRAY XE6 BG-P

N atom= 480; Nel = 6000;  
nmo = 7400; nao = 14240
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Slab 12x12 Rh(111) slab, a0=3.801 Å, 1 layer hBN 13x13  
4L: 576Rh + 169BN: Nao=19370 ; Nel=11144 

7L: 1008Rh + 338BN: Nao=34996 ; Nel=19840 

Structure opt. > 300 iterations => 1÷2 weeks on 512 cores

hBN/Rh(111) Nanomesh 
13x13 hBN on 12x12 Rh slab

2116 Ru atoms (8 valence el.) + 1250 C atoms, 
Nel=21928, Nao=47990 ; 

~ several days per structure optimisation

graph./Ru(0001) Superstructure 
25x25 g on 23x23 Ru

Iannuzzi et al., PRB  (2013) 
Cun, Iannuzzi et al, Nano Letter (2013)



SCF for MetalsSCF for Metals

32

    &SCF 
      SCF_GUESS ATOMIC 
      MAX_SCF   50 
      EPS_SCF 1.0e-7 
      EPS_DIIS 1.0e-7 
     &SMEAR 
        METHOD FERMI_DIRAC 
        ELECTRONIC_TEMPERATURE   500. 
      &END SMEAR 
      &MIXING 
          METHOD BROYDEN_MIXING 
          ALPHA   0.6 
          BETA   1.0 
          NBROYDEN 15 
      &END MIXING 
      ADDED_MOS   20 20 
    &END SCF 

 &XC 
   &XC_FUNCTIONAL PBE 
   &END 
   &vdW_POTENTIAL 
     DISPERSION_FUNCTIONAL PAIR_POTENTIAL 
     &PAIR_POTENTIAL 
         TYPE DFTD3 
         PARAMETER_FILE_NAME dftd3.dat 
         REFERENCE_FUNCTIONAL PBE 
     &END PAIR_POTENTIAL 
   &END vdW_POTENTIAL 
 &END XC
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Figure 1: Side and top view of the optimized gr/Ru(0001) slab model. The color code used
for the carbon atoms indicates their height over the substrate, measured as the minimum
vertical distance (projection along the surface normal) from the virtual unrelaxed Ru surface
used as reference (to simplify the comparison with experiments). C at more than 3.40 Å are
in red, between 3.40 Å and 3.10 Å orange, between 3.10 Å and 2.70 Å yellow, between 2.70
Å and 2.40 Å green, closer blue. The minimum C height is 2.06 Å.

Results and Discussion

LEED images of gr/Ru(0001) are shown in Figure 2a for di↵erent values of electron energy,

exemplifying the high structural quality of the carbon layer. The satellite spots surrounding

the intense spot from Ru(0001) are characteristics of the moiré superstructure. The XPS data

of gr/Ru(0001) is shown in Figure 2b. The spectrum presented in Figure 2b is measured

with an incident photon energy of 330 eV. This value was chosen to increase the surface

sensitivity due to the low value of the resulting photoelectron kinetic energy (⇡ 46 eV).

Moreover, the surface sensitivity was also enhanced by setting the emission angle close to

90 . Although the Ru 3d
3/2 signal partially overlaps with the C 1s peaks, the analysis of

8

graphene

Ru slab

valley
hill

itself in the electronic structure as splittings of the Dirac cone,9 the C 1s core level,15 and

the image potential states.10 The strong binding in the valley region is exemplified by the

fact that helium atom scattering detects the same Rayleigh surface wave for Ru(0001) and

gr/Ru(0001).16

Quantification of corrugation-induced e↵ects requires the knowledge of the geometric

structure of the gr/Ru(0001) interface. The most fundamental structural parameters char-

acterizing the interaction with the substrate are the adsorption height of the strongly inter-

acting valley h
min

and the corrugation amplitude �h, which measures the di↵erence between

h
min

and the top of the hill at h
max

.

However, up to now, no agreement has been reached on these parameters despite numer-

ous studies where experimental values between 1.45 and 2.10 Å for h
min

and 0.15 and 1.5 Å for

�h have been reported (see Tab. 1 for an overview). This is a common problem for epitaxial

2D materials arising from the the convolution of topography and electronic or mechanical

properties in scanning probe methods4,8,17 and the di�culty in modelling large moire unit

cells in scattering techniques.5,18,19 In addition, for the case of helium atom scattering, the

low apparent corrugation could be due to a modulation of the Deby-Waller factor within

the moiré cell in combination with an anticorrugation e↵ect due to di↵erent positions of the

Fermi level in the hills and the valleys.20 In summary, the ambiguity of the experimental

findings is a disquieting situation for such a well-studied system.

Table 1: Summary of experimental results concerning the structure of gr/Ru(0001). The
average bond distance between the substrate and the flat graphene valley is denoted h

min

,
and �h is the height of the hill above this value. LEEM: low-energy electron microscopy,
LEED: low-energy electron di↵raction, SXRD: surface x-ray di↵raction, HAS: helium atom
scattering.

Method h
min

(Å) �h (Å)
LEEM5 1.5± 0.1 -
LEED18 2.1± 0.2 1.5 ± 0.2
SXRD21 - 0.82± 0.15
HAS19 - 0.17± 0.03

From a theoretical point of view, there are two di�culties in calculating the structure

3 2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Ve
rti

ca
l d

is
ta

nc
e 

fr
om

 c
lo

se
st

 R
h 

at
om

 [Å
]

10 20 30 40 50 60 70 80 90 100
Running percentage [%]

10 20 30 40 50 60 70 80 90 100
Running percentage [%]

A
bsolute height, setting 0 at average R

h(1) height [Å
]

C height given
relative to closest Ru of

top slab layer.
Ru(1): top slab layer 

M =

(a0
Ru

� a0
gr

)

a0
gr

Model a0
gr

CC

eq

a0
Ru

M [%] Ma [%] h
min

h
max

�h %valley %hill hill h
av

Ru(1) h
av

Ru(1) �h

a
Ru

= 2.718 h
min

+ 0.1 h
max

� 20%

Experiment 2.46 1.42 2.7059 9.09 2.18 72 28 2.75

12on11 DZ PBE D3 2.469 1.425 2.681 7.907 9.16115 2.18 3.69 1.51 39.58 32.64 2.92 -0.105 0.087

12on11 DZ PBE rVV10 2.468 1.425 2.677 7.807 9.19794 2.18 3.61 1.43 62.84 14.58 2.81 +0.079 0.172

12on11 DZ BEEF 2.456 1.418 2.703 9.138 9.63944 2.23 3.77 1.55 27.43 34.72 3.01 +0.037 0.132

12on11 DZ optB88 DRSLL 2.467 1.424 2.690 8.290 9.23473 2.24 3.69 1.466 42.36 31.94 3.00 -0.100 0.018

12on11 DZ optPBE rVV10 2.468 1.425 2.668 7.496 9.19794 2.16 3.55 1.38 74.31 12.85 2.81 -0.166 0.137

12on11 TZ PBE rVV10 2.468 1.425 2.677 7.807 9.19794 2.18 3.61 1.43 65.28 15.28 2.84 -0.086 0.130

25on23 DZ PBE rVV10 2.468 1.425 2.677 7.807 9.19794 2.18 3.55 1.38 71.12 13.12 2.81 -0.148 0.159

25on23 DZ revPBE D2 2.471 1.426 2.672 7.52 9.08756 2.21 3.22 1.02 56.72 20.48 2.66 -0.047 0.178

1

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Ve
rti

ca
l d

is
ta

nc
e 

fr
om

 c
lo

se
st

 R
h 

at
om

 [Å
]

10 20 30 40 50 60 70 80 90 100
Running percentage [%]

10 20 30 40 50 60 70 80 90 100
Running percentage [%]

A
bsolute height, setting 0 at average R

h(1) height [Å
]

25on23 DZ q8 revPBE D2 25on23 DZ q16 PBE rVV10
abs. height [Å]

h<2.3

2.3<h<2.7

2.7<h<3.1

3.1<h<3.3

3.3<h<3.5

Carbon corrugation

Ru(1) corrugation
abs. height [Å]

-0.15<h<-0.1

-0.1<h<-0.05

-0.05<h<0.0

0.0<h<0.05

Carbon corrugation

-0.25<h<-0.2

-0.2<h<-0.15

Issues:     binding distance 
corrugation 

height distribution



Electron Density: Cube FileElectron Density: Cube File

2

n(r) =
�

µ�

Pµ��µ(r)��(r)�
�

µ�

Pµ��̄µ�(R) = n(R)
Valence density on regular grids

Cutoff might be too small for high resolution close to the nuclei (all electrons)

 i(r) =
X

µ

Cµi'µ(r) !
X

µ

Cµi'̄(R) =  i(R)

-Quickstep-
 TOTAL DENSITY
    8    0.000000    0.000000    0.000000
   54    0.349949    0.000000    0.000000
   54    0.000000    0.349949    0.000000
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    1    0.000000    7.574948    9.448631   13.010846
    1    0.000000    9.448631   11.416848   15.778669
    1    0.000000    9.448631    7.480413   15.778669
    1    0.000000    9.448631    7.480413   10.242860
    1    0.000000    9.448631   11.416848   10.242860
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  0.24355E-08  0.28348E-08  0.32950E-08  0.38170E-08  0.44000E-08  0.50422E-08
  0.57400E-08  0.64880E-08  0.72795E-08  0.81060E-08  0.89579E-08  0.98243E-08

B2H6



Spin DensitySpin Density

3

Spin polarized DFT calculations: 

n(�)(r) =
X

µ⌫

P (�)
µ⌫ 'µ(r)'⌫(r)n(↵)(r) =

X

µ⌫

P (↵)
µ⌫ 'µ(r)'⌫(r)

�nspin(r) = n(↵)(r)� n(�)(r) ! �nspin(R)

H3C-CO-NH2-CH3
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Valence Electron Density
Example:H3C � CO �NH2 � CH3

n(R)

(H3C-CO-NH2-CH3)+

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Spin Density
Example:[H3C � CO �NH2 � CH3]

+

�nspin(R)



Density DifferenceDensity Difference

5

Changes in the electronic density  due to interactions, e.g., molecule adsorbed on substrate

Hexa-iodo Cyclohexa-m-phenylene (CHP)
Molecules synthesized by M. Kastler / K. Müllen MPI Mainz
Figures: Marco Bieri at al., Chem Com. 45,7 (2009)  

Marco Bieri at al., JACS accpeted (2010) 

CHP on Cu(111) @ RT 

DFT

On Ag(111), Au(111) and Cu(111) the iodine 

dissociates from the CHP at temperatures 

below 300 K.

This is in agreement with experiences from 

the adsorption of hexo-iodo-benzene on these 

surfaces.   

I 3d

! !

!"#$%&'()*+,(-+$"%

.'/'0',&#

.'1'0')2(-3

4$55&,&%-&'$%'#&%*$+$&*'672")(2'*8*+&9:';'6$*"2(+&#'*<&-$&*:

Rh

hBN
CHP

E
int

= E
tot

�
⇣
Ef

sub

+ Ef
mol

⌘
E

ads

= E
tot

� (Eo

sub

+ Eo

mol

)

CHP on hBN/Rh (5 eV)

�n
int

(r) = n
tot

(r)�
⇣
nf
sub

(r) + nf
mol

(r)
⌘



STM ImagesSTM images

6

z : nb(X,Y, z) e�2kR0
�

�(X,Y,z)

Tersoff-Hamann approximation to mimic the iso-current topography

nb(r) =
X

i:"i2[Ef�Vb:Ef ]

"
X

µ⌫

C⇤
µiC⌫i'µ(r)'⌫(r)

#
! nb(R)

Find height at constant energy projected density

CHP at h-BN/Rh(111) Nanomesh
Annealing @ approximately 120° C for 150 sec

CHP at h-BN/Rh(111) Nanomesh
Annealing @ approximately 120° C for 150 sec

occupied states unoccupied states

Vb=-1310 mV Vb=+1480 mV
CHP on hBN/Rh (5 eV)



Position Operator for Isolated SystemsPosition operator for isolated systems
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One body operator

X̂ =
NX

i=1

xi

Expectation value

hXi = h |X̂| i =
Z

x n(x)dx

Gauge invariance

hXiR = h |X̂ +R| i = hXi0 +R

Z
n(x)dx = hXi0 +RZ



Position Operator with PBCPosition Operator with PBC

8

Expectation value of the position operator

R̂ =
X

i

r̂i hRi = h |R̂| i =
Z

rn(r)dr

Wavefunctions are periodic, result of an operator has also to be periodic

 (r) =  (r+ L) R̂ (r) 6= (R̂+ L) (r+ L)Periodic Position Operator

hXi =
L

2⇡

Im lnh | e

i

2⇡

L

X̂ |  i

• many-body operator!

• correct asymptotic value L !1; N !1; N/L ! n0

• Polarization

Pel = lim
L!1

e

2⇡

Im lnh | e

i

2⇡

L

X̂ |  i

Berry PhaseMany-body periodic  
position operator (1D)

Resta, R. (1998). Quantum-Mechanical Position Operator in 
Extended Systems. Physical Review Letters, 80(9), 1800–1803.
and more by R. Resta …..

(3D)

Periodic Position Operator

hXi =
L

2⇡

Im lnh | e

i

2⇡

L

X̂ |  i

• many-body operator!

• correct asymptotic value L !1; N !1; N/L ! n0

• Polarization

Pel = lim
L!1

e

2⇡

Im lnh | e

i

2⇡

L

X̂ |  i
Electronic polarisation 



PolarizationPolarisation
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2⇡

L
= G1

| i = A
Y

i

Y

s

 qs,i(r)

Many-body wavefunction (Bloch orbitals)

New set of Bloch orbitals

 ̃

qs,m(x) = e

�i

2⇡
L x

 

qs,m(x)

hXi = � L

2⇡
Im lnh | ̃i

Expectation value from overlap of determinants

S↵
ij =

Z
 i(r)e

iG↵1·r j(r)dr P↵ =
2e

G↵1
Im ln [detS↵]

= determinants of overlap of orbitals

hXi = � L

2⇡
Im lnh | ̃i = � L

2⇡
Im ln detS



Localized Orbitals
Boys spread of the orbitals through a 2-el operator 

With PBC, localize equivalent to minimize  

Find the unitary transformation 

Iterative procedure (parallel Jacobi rotations) 

Centre of the charge distribution of the rotated orbital

Localised Orbitals

10

Ω =
1

2π

∑

s

∑

i

ωs(1 − (|zsi|
2)) zsi =

∫
dr eiks·r|ψi(r)|

2

ψ̃i(r) =
∑

j

Uijψi(r)
∂Ω

∂Uij

= 0

R.Resta,  Phys. Rev. Lett., 82 370 (1999);
 G.Bergold et al, Phys. Rev. B, 61 10041 (2000)

⌦ =
X

i

h i i|(r1 � r2)
2| i ii

KS MLWF
hrsii =

Ls

2⇡
Im ln zsi



Wannier CentersWannier Centers (3D)

11

For a generalised 3D box h, for each maximally localised Wannier orbital

zsi = deth

Z
dr eiks·r| i(r)|2 rsi = �

X

t

hst

2⇡
Im ln zti
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Wannier Centers
Example:H3C � CO �NH2 � CH3

Molecular dipole moment from Wannier centres

µW
s = e

X

i

rsi = �e
X

i

X

t

hst

2⇡
Im ln zti = �e

X

t

hst

2⇡
Im ln

Y

i

zti

IR spectra from dipole moment autocorrelation function
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IR Spectra
IR absorption coefficient ↵(!) can be calculated from

↵(!) =

4⇡ ! tanh(�~!/2)

~n(!)cV

Z 1

�1
dt e�i!thP (t) · P (0)i ,

• V: volume of supercell
• T: temperature, � = 1/kBT

• n(!): refractive index

• c: speed of light in vacuum
• quantum effect corrections: factor tanh(�~!/2)

More sophisticated treatments of quantum effects are also available. They
consist of replacing the classical correlation function with a more involved
procedure.




