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The Big Promise

Paul Adrian Maurice 
Dirac

(1902-1984)

„... hence it would be desirable to develop practical approximation 
schemes for the application of quantum mechanics“

Dirac, PAM Proc. Roy. Soc.Ser. A, 1929, 123, 714 

The fundamental laws necessary for the 
mathematical treatment of large part of 
physics and the whole of chemistry are 

thus completely known, and the difficulty 
lies only in the fact that applications of 

these laws leads to equations that are too 
complex to be solved “ 



.. but not like this please!

Enrico Clementi
(born 1931)

We can calculate everything! 
(1975)



Aristotle
(384 BC - 322 BC)

„All science begins by wondering why the 
things are as they are“

„Science starts by being curious“

Linus Pauling
(1901-1994)



• In order to predict quantities that can not be measured (example: short lived 
intermediates that never accumulate enough for experimental studies)


• In order to interpret the outcome of experiments (example: complex NMR or EPR 
spectra)


• In order to obtain insight in the regularities of data (example: understand the key 
factors that contribute to reactivity trends in a series of related molecules)


• In order to predict the outcome of future experiments (example: Design of materials 
- how do i have to change the molecule in order to optimize a given property)


• Have fun with computers, study algorithms, approximations and other „inner 
theoretical reasons to do it“, …


Why Quantum Chemistry ?



… but not like this please
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Seeking Feedback from Experiment
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Karl Raimund Popper 
(1902-1994)

… but I shall certain admit a system as empirical 

or scientific only if it is capable of being tested 

by experience. These considerations suggest 

that not verifiability but the falsifiability of a 

system is to be taken as a criterion of 

demarcation.

The logic of scientific discovery (1959)



„Experiments are the only source of knowledge at our 
disposal. The rest is poetry, imagination“

quoted in Adv. Biochem. Psychopharm., 1980, 25, 3

Max Planck 
(1858-1947)



Observables Interpretation Aids

Resonance
Hybridization

Ligand Field

Partial charge

p-system

Bond order

Orbitals

Dissociation energy
Dipole moment

Chemical shift
Molecular mass Excitation  

energy



Fundamental Interactions in Molecules
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The Schrödinger Equation

    Ĥ(x,R)Ψ(x,R) = EΨ(x,R) E = Total Energy

★ In order to go to quantum mechanics we move over to atomic units in which

     ! = 4πε
0

= e
0

= m
e

= 1 c = 137.06

★ And replace the momentum by its quantum mechanical analogue:

     
p

i
→−î

!
∇

i

!
∇ = ∂

∂x
, ∂
∂y

, ∂
∂z( )    î = imaginary unit î 2 = −1

★ We finally need to introduce the spin of each electron σi that can only assume 
the two values α and β. The three space and one spin variable for each electron 
are collected in the vector x. 

★ Schrödinger‘s equation for the many particle wavefunction Ψ(x1,...,xN,R1,...,RM,t) 
≡ Ψ(x,R,t) is: 

    
î
∂
∂t
Ψ(x,R,t) = Ĥ(x,R,t)Ψ(x,R,t)

★ But if the Hamiltonian does not depend on time (which is assumed henceforth), 
we obtain the time-independent Schrödinger eigenvalue equation



The Born-Oppenheimer Approximation
★ As a final step, we need the Born-Oppenheimer approximation which amounts 

to the neglect of the kinetic energy of the nuclei. 

★ Justification (heuristic): Nuclei are much heavier and move much slower than 
electrons. hence, electrons adjust themselves immediatly  to any nuclear 
configuration. 
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e
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!

★ Consequence 1: The concepts of chemical structures and potential energy 
surfaces (Energy as function of nuclear coordinates) emerges!

★ Consequence 2: The Schrödinger equation separates into two equations. One of 
the electrons for any given arrangement of the nuclei and one for the nuclei on a 
given potential energy surface!

    ĤBO
Ψ(x | R) = E(R)Ψ(x | R)

     
T̂

N
+ E(R){ }Θ(R) = EΘ(R)

The total wavefunction would be the product of the electronic wavefunction and the 
nuclear wavefunction but here we are mainly concerned with the electronic part.



Is the Born-Oppenheimer Approximation Good?

The BO Hamiltonian - despite its (apparent) simplicity - is a great achievement: it 
describes 99% of all chemistry correctly. Exceptions are: 

★ The BO Hamiltonian does not contain terms that describe the interactions of nuclei and 
electrons with external electric and magnetic fields 

★  The BO Hamiltonian misses many small terms that are associated with the electron and 
nuclear spins


★  The BO Hamiltonian does assume a point like nucleus 
★  The BO Hamiltonian breaks down in situations where the separation of nuclear and 

electronic movements is no longer well separated. For example in Jahn-Teller systems. 

★ The Born-Oppenheimer Hamiltonian needs to be party replaced or supplemented with 

relativistic terms if heavy elements are involved.

Only for the description of more advanced spectroscopies, such as EPR 
spectroscopy, do we need to proceed beyond the Born-Oppenheimer 
approximation.



The Many Particle Wavefunction
Born-Interpretation:

Given the nuclear configuration R, the square of Ψ gives the conditional 
probability for finding electron 1 at r1 with spin σ1, electron 2 at r2 with spin σ2, ...

Pauli-Principle:

Antisymmetry with respect to particle interchanges (electrons are Fermions)
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How do I picture the many electron wavefunction?

You don‘t
➡ Nobody can intuitively picture a function of 4N variables. 

➡ Insight has to come from elsewhere

Important NOTE: NO ORBITALS YET! Orbitals are not fundamental objects 



The Total Energy

What is the total energy E(R)?
The energy that is required to separate the molecule into noninteracting 
protons and electrons. 

Is this observable?
In principle: YES

in practice: NO

What is its relevance? 
In chemistry and spectroscopy we measure energy differences! This will be 
elaborated below

How large is it? 
Quite typically, for a transition metal complex, it is, say, 10,000-100,000 eV

How accurate do we need it?
If we want to have energy differences accurate to ~1 kcal/mol then we need 
to have it accurate to 0.05 eV or in other words: better than 1 ppm!

Note: 1 atomic unit (a.u.) ~27.21 eV ~627 kcal/mol 



Chemistry and Potential Energy Surfaces

Chemistry (reactions) occur typically only on the ground or at most on a few low-lying 
potential energy surfaces. Thus, the most important feature is the variation of the total 
energy with changes in the nuclear coordinates:

Energy

Nuclear coordinates

Saddle point 
(„Transition State“)

Local 
Minimum 

(„reactants“)

Global 
Minimum 

(„products“)
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Equilbrium Constant

Reaction Rate



Spectroscopy and States
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Apply some kind of oscillating perturbing field with Hamiltonian H1(ω) in order to 
induce transitions between different states of the system
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(„Fermi‘s Golden Rule“)
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Spectroscopic Techniques
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Solving the Born-Oppenheimer Equation

★ How do we solve the many-particle Born-Oppenheimer equation? 

NOT AT ALL!
➡ The Born-Oppenheimer Schrödinger equation can not be solved in closed form 

for more than one electron. Not even for the simplest two electron cases.

➡ We need approximation methods



Approximate Quantum Mechanical Methods
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✓ Ideally we would always solve the relativistic many particle Schrödinger equation 
combined with quantum dynamics for a the entire system including its environment at 
finite temperature and inclusion of radiative corrections ... 

.... but we cannot do that  

.... neither do we need that to answer many useful chemical questions 

➡ Be accurate where it matters! 

➡ Be interested in your error sources!



Total Energy ~ 290 668 kcal/mol

Queen Mary 2:  
ca. 56 400 000 kg

Frank Neese   
ca. 80 kg

An error of only 1.3 kcal/mol (=0.056 eV =450 cm-1)  
is equivalent to:


‣ pKa-value	 	 : One log-unit 
‣ Redox Potential	 : 56 mV   
‣ Reaction Rate	 : Factor 10 

Possible Consequences: 
a) Need extremely accurate theory 
b) Need very good error compensation

c) Care about properties other than Etot



Where it matters NH3: rovibrational bands at T=300 K

S. N. Yurchenko, R. J. Barber, A. Yachmenev, W. Thiel, P. Jensen, and J. Tennyson, J. Phys. Chem. A 113, 11845  (2009).
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Where it matters: Enantioselective Hydrogenation of 
Prochiral Enamides
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Steven Feldgus, and Clark R. Landis  J. Am. Chem. Soc., 2000, 122 (51), 12714-12727
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Steven Feldgus, and Clark R. Landis  J. Am. Chem. Soc., 2000, 122 (51), 12714-12727
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How accurate is accurate enough?
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Where efforts may not be well spent

Example: Host/guest or Drug/Receptor complexes:

O Caldararu, MA Olsson, C Riplinger, FN, U Ryde Comp.  
Aid. Molec. Design., 2017, 31, 87

Complex organic reaction mechanisms

D Walden, O Ogba, P Cheong, C Riplinger, FN JCTC, 
2017, to be submitted

In both cases, overall not much overall improvement over DFT due to 
limitations in entropy and solvation contributions



Approximations: The Variational Principle

Given a trial wavefunction that depends on some parameters p: 
    Ψtrial

(x | R,p)

The „Ritz-functional“ is: 

   

E[Ψ] =
Ψ

trial
| H | Ψ

trial

Ψ
trial

| Ψ
trial

For the exact wavefunction E[Ψ] is the exact energy. For any other wavefunction 
it is readily shown that: 

   E[Ψ]≥ E
exact

Hence, we can search for a minimum of E[Ψ] with respect to the parameters p to 
obtain the best possible approximation within the given Ansatz. The condition for a 
stationary point is: 

   

∂E[Ψ]

∂p
I

= 0 (all I )



Ansatz: The Hartree-Fock Method

The Hartree-Fock (HF) method is obtain by a specific Ansatz for the trail 
wavefunction. It is inspired by the form the wavefunction would have, if the 
electron-electron interation would not be there („independent particle model“)

In this case, the wavefunction would be a simple product of one-electron functions. 
However, the overall wavefunction needs to fulfil the Pauli principle. Hence, one 
employs a „Slater determinant“ 
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The „auxiliary“ one-electron functions that have been introduced are called 
„orbitals“. They are the objects to be varied in order to find the best possible 
approximation to the true wavefunction.



The Hartree-Fock Roothaan Method
It is difficult to vary the orbitals themselves. Rather what one does is to expand the 
orbitals in another set of auxiliary functions, the „basis set“

     
ψ

i
(x) = c

µi
ϕ

µ
(x)

µ
∑

If the basis set {φ} would be mathematically „complete“, the expansion would be 
exact. In practice, we have to live with less than complete basis set expansions. 

Carrying out the variation now with respect to the unknown „MO coefficients“ c 
leads to the famous Hartree-Fock Roothaan equations. The MO coefficients must 
satisfy the following coupled set of nonlinear equations: 
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The Fock Operator

The orbital energy is the expectation value over the Fock operator and describes 
the average energy of the electron in orbital i: 
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Where the „two-electron integral“ is:
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Coulomb integral Exchange integral
• Electrostatic interaction between 

„smeared“ out charge distributions  
|ψi|2 and |ψj|2 


• „classical“ interaction

• Always positive

• Electrostatic self-interaction of the „smeared“ out 
„interference density“ ψiψj 


• Purely quantum mechanical

• Arises from the Pauli principle

• Always positive (not trivial)

• Does NOT describe a genuine „exchange interaction“



Interpretation of the Hartree-Fock Model

Each electron moves in the field created by the nuclei and the average field created 
by the other electrons („mean field model“) - this also called the „Hartree-Fock 
sea“

A

B

e-

VNN

VeN

Vee

Te VeN



Solving the Hartree-Fock Equations

The Fock operator depends on its own eigenfunctions! Hence, the Hartree-Fock 
equations are highly nonlinear and can only be solved by an iterative process:

1. Guess some starting orbitals


2. Calculate the Fock operator with the present orbitals


3. Diagonalize the Fock operator to obtain new orbitals


4. Calculate the total energy


5. Check for convergence

Print results and/or do additional calculations

Converged (Hurray!)

N
ot

 c
on

ve
rg

ed

Disclaimer  
Convergence may be slow, may not occur at all or may occur to a high energy solution that may or 

may not be physically sensible! Special techniques are often required to reach convergence



How Good is Hartree-Fock Theory?

Exact HF Energy  : -128.547 Eh 
Exact Experimental Energy : -129.056 Eh 

Consider a Hartree-Fock calculation on the Neon atom (10 electrons)

Good News: HF recovers 99.6% of the exact energy (after subtraction of relativistic 
effects ~99.8%)

(NOTE: exact experimental energy= sum of the ten ionization potentials)

Bad News: The conversion factors work against us! 

1 Eh = 27.21 eV 
1 eV = 23.06 kcal/mol  
     = 8065 cm-1

Thus, the small HF error amounts to the huge number of 319 kcal/mol error! In 
chemistry one aims at 1 kcal/mol accuracy.

✓ Very hard to achieve for absolute energies

✓ We usually want relative energies (much easier but still hard)



Interpretation of the Hartree-Fock Solutions

The primary result of Hartree-Fock calculation (once converged) is the 

Total energy

And the approximate many-electron wavefunction
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But what about the „secondary quantities“, the orbital energies

  εi
= roughly the energy it takes to remove the electron from the molecule (,Ionization 
   potential‘) (Koopman‘s Theorem)

And the orbitals themselves:

     
ψ

i
(x) = c

µi
ϕ

µ
(x)

µ
∑ Rigorous: No fundamental importance despite frequent use of HOMO/

LUMO and related arguments

In practice: Describes the „electronic structure“ of the molecule in terms of 
bonding orbitals, antibonding orbitals or lone pairs.

→ Subject of endless fights and debates. However, please remember: Orbitals are NOT observable.



The Electron Density

✓ Weakly structured


✓ Always positive


✓ Insensitive to bonding

In HF Theory:
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Partial Charges and Bond Orders

As (bio)chemists we want to think of „polar groups“ and „partial charges“ and „ionic 
character“ and all that. Hence, we have a desire to divide the total electron density 
such that parts of it are „assigned“ to individual atoms. 


This is the subject of „population analysis“. It is never unique and hence very 
many different schemes exist. 


The easiest is due to Mulliken: 
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Refined Schemes are the „Natural Population Analysis“ (NPA) and the „Atoms in 
Molecules (Bader)“ Analysis. 

NOTE: Since partial charges are NOT observables there is no „best“ charge. One should stick to one scheme and then look at 
trends.



The Spin Density

✓ Strongly structured


✓ Positive or negative


✓ Highly sensitive to bonding
Spin Density

In HF Theory:
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What is missing from Hartree-Fock Theory?

Correlation energy= Σ
i,j Electron pairs

    εij(↑↑)      +      εij(↑↓)½
Fermi-Correlation Coulomb-correlation

Relatively easy due to 
“Fermi hole” in the 

mean-field

Extremely hard to 
calculate due to 

interelectronic cusp at 
the coalescence point 
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Coupled Cluster Theory in a Nutshell

Ansatz 
(Coester & Kuemmel)

Reference determinant MOs BFsMO 
coeffs
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Connceted excitations 

like CI, linear
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disconnected excitations 
(statistically uncorrelated)

Determination of the energy and the cluster amplitudes
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Nonlinear equation set, 

not hard to solve;  

up to 4th power of amplitudes
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Amplitudes

Gold Standard:

CCSD(T)



Accurate Solutions

Nakatsuji, JCP 113, 2949 (2000); Nakatsuji, Davidson, JCP 115, 2000 (2001).

W4 theory for computational thermochemistry: In pursuit of confident
sub-kJ/mol predictions

Amir Karton, Elena Rabinovich, and Jan M. L. Martina!

Department of Organic Chemistry, Weizmann Institute of Science, IL-76100 Reh!ovot, Israel

Branko Ruscic
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
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In an attempt to improve on our earlier W3 theory #A. D. Boese et al., J. Chem. Phys. 120, 4129
!2004"$ we consider such refinements as more accurate estimates for the contribution of connected
quadruple excitations !T̂4", inclusion of connected quintuple excitations !T̂5", diagonal
Born-Oppenheimer corrections !DBOC", and improved basis set extrapolation procedures. Revised
experimental data for validation purposes were obtained from the latest version of the Active
Thermochemical Tables thermochemical network. The recent CCSDT!Q" method offers a
cost-effective way of estimating T̂4, but is insufficient by itself if the molecule exhibits some
nondynamical correlation. The latter considerably slows down basis set convergence for T̂4, and
anomalous basis set convergence in highly polar systems makes two-point extrapolation procedures
unusable. However, we found that the CCSDTQ−CCSDT!Q" difference converges quite rapidly
with the basis set, and that the formula 1.10#CCSDT!Q" / cc-pVTZ+CCSDTQ/cc-pVDZ
-CCSDT!Q" / cc-pVDZ$ offers a very reliable as well as fairly cost-effective estimate of the basis set
limit T̂4 contribution. The T̂5 contribution converges very rapidly with the basis set, and even a
simple double-zeta basis set appears to be adequate. The largest T̂5 contribution found in the present
work is on the order of 0.5 kcal/mol !for ozone". DBOCs are significant at the 0.1 kcal/mol level
in hydride systems. Post-CCSD!T" contributions to the core-valence correlation energy are only
significant at that level in systems with severe nondynamical correlation effects. Based on the
accumulated experience, a new computational thermochemistry protocol for first- and second-row
main-group systems, to be known as W4 theory, is proposed. Its computational cost is not
insurmountably higher than that of the earlier W3 theory, while performance is markedly superior.
Our W4 atomization energies for a number of key species are in excellent agreement !better than
0.1 kcal/mol on average, 95% confidence intervals narrower than 1 kJ/mol" with the latest
experimental data obtained from Active Thermochemical Tables. Lower-cost variants are proposed:
the sequence W1→W2.2→W3.2→W4lite→W4 is proposed as a converging hierarchy of
computational thermochemistry methods. A simple a priori estimate for the importance of
post-CCSD!T" correlation contributions !and hence a pessimistic estimate for the error in a W2-type
calculation" is proposed. © 2006 American Institute of Physics. #DOI: 10.1063/1.2348881$

I. INTRODUCTION

In the past 15 years, computational thermochemistry has
matured to the point where its accuracy is often competitive
with all but the most accurate experimental techniques.

A compact overview of computational thermochemistry
methods in all their variety has very recently been published
by one of us,1 while a book with more detailed reviews of the
various techniques was published in 2001.2 In terms of
“ready-made” nonempirical small-molecule methods of sub-
kcal/mol accuracy, there have been two major developments
in the last few years. One is the Wn family of computational
thermochemistry protocols !to be discussed below",3–5 the
other has been the highly accurate extrapolated ab initio ther-
mochemistry !HEAT" project by a multinational group of

researchers.6 In this context, mention should be made of the
related “focal point approach” pioneered by Császár et
al.7—which is, however, more a general strategy than a pre-
cisely defined computational protocol—as well as of the con-
figuration interaction extrapolation based work of Bytautas
and Ruedenberg.8

The Wn theory naming scheme was introduced in anal-
ogy to the Gn theory family of methods of the late lamented
Pople and co-workers.9 The basic philosophy of the Wn fam-
ily of methods can be outlined as follows.

• All terms in the Hamiltonian that can reasonably con-
tribute at the kJ/mol level to the atomization energy
should be retained:

• Basis set convergence is established for each contribu-
tion individually, and the smallest basis sets are used fora"Electronic mail: comartin@weizmann.ac.il
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... meaning the (non-relativistic) Schrödinger equation is solved to an accuracy of  0.0001 
Eh which is ~99.9999% or ~1 part in 106!

... For really small systems (1-6 electrons), we can today reach „crazy accuracy“, e.g. 
Nakatsuji calculated the H2- ground state energy to be -0.597 139 063 123 405 074 834 

134 096 025 974 142 a.u. (36 significant digits!)



Problems with Coupled Cluster Theory
So why don‘t we use these accurate ab initio methods for our 

everday theoretical chemistry?

Explosive cost 
Wall clock time  ∝ O(N7)



Saving Time in Electronic Structure Calculations

Exploit Sparsity!
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Approximation 1: Pair Approximation

FN, Wennmohs, F.; Hansen, A. 2009, J. Chem. Phys. 130, 114108

E
corr
= 1
4
C
ab
ij ij ||ab

ijab
∑ = 1

2
ε
ij

ij
∑

Pair energy 
MP2 estimate

Exploit locality 
by cutting pairs 
with estimated 
eij <TCutPairs



Approximation 2: Virtual Space truncation
ε
ij
≈ 1
2

C
ab
ij ij ||ab

a,b∈pair−domain ij
∑

✓ Projected atomic orbitals (Pulay, Werner, Schütz), localized virtual orbitals 
(Förner, Jørgensen, …) 

➡ It works, but for high accuracy (99.9%) the domains become impractically large
➡ Need „compaction“ of the space

✓ Truncated canonical virtual orbitals?

➡ BAD idea!



Most Compact Expansion: Natural Orbitals

Shortest possible accurate virtual 
space expansion through neglecting 

natural orbitals with occupation 
number TCutNO (<10-7)

(1)
(5)

(13) (29) (54)



Huge Calculations with linear DLPNO-CCSD(T)

C. Riplinger, P. Pinski, U. Becker, E.F. Valeev, FN, 2016, 144, 024109

Crambin/def2-TZVP 
644 atoms 

12705 Basis functions 
10 d/4 cores 

C350H702/def2-TZVP 
1052 atoms 

15062 Basis functions 
18h/4 cores 

Integrase/cc-pVDZ 
2380 atoms 

22621 Basis functions 
62h/64 cores 

(CIM-DLPNO-CCSD(T))  
Y. Guo, FN, 2017, in preparation 



DFT: Basis for the Hohenberg-Kohn Theorems

O-nucleus

C-nucleus

Electron Density of the CO molecule

We can reconstruct the 
nuclear positions and 

charges from the electron 
density

This means, we can 
reconstruct the BO 
Hamiltonian of the 

molecule from ρ(r) alone

H! " E! Everything from the Density ?
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Deduce Deduce Solve!

The Hohenberg Kohn-Theorems

Knowing 
ρ(r) VeN,N HBO E, Ψ

Somehow possible

If we know the BO Hamiltonian of the molecule we could (in principle) solve the Schrödinger 

equation. Hence, the exact N-particle wavefunction, the exact energy and all expectation 

values are functionals of the electron density!

The “big dream” is to go directly from the electron density to the exact energy. From the 
DFT logics this must be “somehow” possible, but we don’t know how! 


1) The existance of the “universal” functional E[ρ] is guaranteed by the first Hohenberg-
Kohn (HK) theorem.


2) The second HK theorem establishes a variational principle that states that E[ρ’] (ρ’ 
being a test density)  ≥ E[ρ]



The DFT Functional

We can start to approach the functional by separating the parts inspired by HF theory that 
we know we can write exclusively in terms of the density: 

H! " E! The DFT Functional
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The Kohn-Sham Construction (I)

DFT only became a practical tool after an ingenious trick of Kohn-Sham. They have 
considered a fictitious model system of independent particles that share the exact electron 
density with the real system.

 

The wavefunction for such a system is a single Slater determinant (Kohn-Sham determinant)

Re-inserting ρ(r) into the energy expression yields the exact E.

The “noninteracting” kinetic energy is:

But now the exchange correlation contains the missing part of the kinetic energy:
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The Kohn-Sham Construction (II)

The Kohn-Sham orbitals are found from the Kohn-Sham equations:

The effective Kohn-Sham potential is defined by:

And the XC contribution is defined by a “functional derivative”:

This is the celebrated formal apparatous of DFT! If we would know EXC, these equations would 
constitute an exact framework. But we don’t (and likely never will)!  

However, much progress has been made by guessing approximate EXC[ρ] and inserting them 
into the Hohenberg-Kohn-Sham machinery. 
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Ab Initio DFT Potentials

There are (expensive!) ways to construct very good KS potentials from accurate densities 
(red). These can be compared with “typical” present day potentials (blue). 

The presently used potentials are far from being correct and all present day DFT 
results rely on cancellation of large errors.
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Big Problems may still exist ...

 
ΔE = +1.9±0.5 kcal/mol  Exp. 
  +1.4     kcal/mol  SCS-MP2 
  -11.5    kcal/mol  HF 
  -8.4     kcal/mol  B3LYP 
  -9.9     kcal/mol  BLYP



Numerical Results

Total, correlation and exchange energies of the Neon atom using the ab initio CCSD(T) method and various standard 
functionals (deviations from the wavefunction results in mEh).

Etot Ecorr Ex

CCSD(T) -128.9260 -0.379 -12.098

-129.0640 (rel)

BP86 -128.9776 (-52) -0.388 (-  9) -12.104 (  -6)

PBE -128.8664 (+60) -0.347 (+32) -12.028 (+70)

BLYP -128.9730 (-47) -0.383 (-  4) -12.099 (  -1)

TPSS -128.9811 (-55) -0.351 (+28) -12.152 (-54)

B3LYP -128.9426 (-17) -0.452 (-73) -12.134 (-36)

B2PLYP -128.9555 (-30) -0.392 (-13) -12.103 (-  5)

Exp -129.056

Wavefunction theory is very accurate (but also very expensive). DFT results vary widely 
among different functionals and either over- or undershoot. However, total energies are 
not important in chemistry – relative energies matter.


