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The Big Promise

The fundamental laws necessary for the
mathematical treatment of large part of
physics and the whole of chemistry are
thus completely known, and the difficulty

lies only in the fact that applications of

these laws leads to equations that are too

complex to be solved “ Paul Adrian Maurice
' Dirac

(1902-1984)

»... hence it would be desirable to develop practical approximation
schemes for the application of quantum mechanics*

Dirac, PAM Proc. Roy. Soc.Ser. A, 1929, 123, 714



.. but not like this please!

We can calculate everything!
(1975)

Enrico Clementi
(born 1931)



LAll science begins by wondering why the
things are as they are”

,Science starts by being curious”

Aristotle
(384 BC - 322 BC)

Linus Pauling
(1901-1994)



Why Quantum Chemistry ?

* In order to predict quantities that can not be measured (example: short lived
intermediates that never accumulate enough for experimental studies)

* In order to interpret the outcome of experiments (example: complex NMR or EPR
spectra)

- In order to obtain insight in the regularities of data (example: understand the key
factors that contribute to reactivity trends in a series of related molecules)

* In order to predict the outcome of future experiments (example: Design of materials
- how do i have to change the molecule in order to optimize a given property)

- Have fun with computers, study algorithms, approximations and other ,inner
theoretical reasons to do it", ...
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Note: 1.au. = 27.21 eV




Seeking Feedback from Experiment

kn+1

AG

Improve

Calculate

Imagine!




Karl Raimund Popper
(1902-1994)

... but | shall certain admit a system as empirical

or scientific only if it is capable of being tested

by experience. These considerations suggest

that not verifiability but the falsifiability of a
system is to be taken as a criterion of

demarcation.

The logic of scientific discovery (1959)



~EXperiments are the only source of knowledge at our
disposal. The rest is poetry, imagination*

quoted in Adv. Biochem. Psychopharm., 1980, 25, 3

Max Planck
(1858-1947)



Observables

Dissdciatioh energy

Rt ipole moment/ .
Chemical shift
.
Molecular mass / - A
~ e ' Excitation

- energy

Interpretation Aids




Fundamental Interactions in Molecules

Just 2 Laws:
1. Coulomb‘s Law
@ ——Q
4,4,

L —1‘2‘

47T€0

2. Kinetic Energy

([ B=T 4T, 4V, 4V, +V, )




The Schrodinger Equation

% In order to go to quantum mechanics we move over to atomic units in which
h=dre, =e =m =1 ¢=137.06

% And replace the momentum by its quantum mechanical analogue:

_’-\_) — L 0 0 0 T . L 2

pi — ZVZ, V = (8x’8y’az) 1 = imaginary unit - = —1

% We finally need to introduce the spin of each electron o; that can only assume
the two values a and 3. The three space and one spin variable for each electron
are collected in the vector x.

% Schrodinger‘s equation for the many particle wavefunction W(xy,...,xn,R1,...,Rwu,1)
= W(x,R,1) is:
» 0 A
() a \IJ(X, R, t) = H(X, R, t)qj(X, R, t)

% But if the Hamiltonian does not depend on time (which is assumed henceforth),
we obtain the time-independent Schrodinger eigenvalue equation

A

H(x,R)¥(x,R) = E¥(x,R) E = Total Energy



The Born-Oppenheimer Approximation

% As a final step, we need the Born-Oppenheimer approximation which amounts
to the neglect of the kinetic energy of the nuclei.
H(r,R) — H, (nR) =T +V, +V, + V

NN
——

constant for given R

% Justification (heuristic): Nuclei are much heavier and move much slower than
electrons. hence, electrons adjust themselves immediatly to any nuclear
configuration.

% Consequence 1: The concepts of chemical structures and potential energy
surfaces (Energy as function of nuclear coordinates) emerges!

% Consequence 2: The Schrodinger equation separates into two equations. One of
the electrons for any given arrangement of the nuclei and one for the nuclei on a
given potential energy surface!

H_¥(x|R)= E[R)¥(x|R)

{T, + ER)|O(R) = O(R)

The total wavefunction would be the product of the electronic wavefunction and the
nuclear wavefunction but here we are mainly concerned with the electronic part.



s the Born-Oppenheimer Approximation Good"?

The BO Hamiltonian - despite its (apparent) simplicity - is a great achievement: it
describes 99% of all chemistry correctly. Exceptions are:

* The BO Hamiltonian does not contain terms that describe the interactions of nuclei and
electrons with external electric and magnetic fields

* The BO Hamiltonian misses many small terms that are associated with the electron and

nuclear spins

The BO Hamiltonian does assume a point like nucleus

* The BO Hamiltonian breaks down in situations where the separation of nuclear and

*

electronic movements is no longer well separated. For example in Jahn-Teller systems.
* The Born-Oppenheimer Hamiltonian needs to be party replaced or supplemented with
relativistic terms if heavy elements are involved.

Only for the description of more advanced spectroscopies, such as EPR
spectroscopy, do we need to proceed beyond the Born-Oppenheimer
approximation.



The Many Particle Wavetunction

Born-Interpretation:

‘\IJ(X | R)‘2 =0 (r o ro. | R)U(ro ro. |R)

1777 NT N 1 179" NTN

Given the nuclear configuration R, the square of W gives the conditional

probability for finding electron 1 at r1 with spin o1, electron 2 at r2 with spin oo, ...

Pauli-Principle:

U(x,,...X X 00X | R)==U(x ,...,x

cees X
i J jr

[/

;. X | R)

Antisymmetry with respect to particle interchanges (electrons are Fermions)

How do | picture the many electron wavefunction?

You don‘t

PR -
= Nobody can intuitively picture a function of 4N variables.
= Insight has to come from elsewhere

Important NOTE: NO ORBITALS YET! Orbitals are not fundamental objects



The Total Energy

What is the total energy E(R)?

The energy that is required to separate the molecule into noninteracting
protons and electrons.

Is this observable?
In principle: YES
in practice: NO

What is its relevance?

In chemistry and spectroscopy we measure energy differences! This will be
elaborated below

How large is it?
Quite typically, for a transition metal complex, it is, say, 10,000-100,000 eV

How accurate do we need it?

If we want to have energy differences accurate to ~1 kcal/mol then we need
to have it accurate to 0.05 €V or in other words: better than 1 ppm!

Note: 1 atomic unit (a.u.) ~27.21 eV ~627 kcal/mol



Chemistry and Potential Energy Surfaces

Chemistry (reactions) occur typically only on the ground or at most on a few low-lying
potential energy surfaces. Thus, the most important feature is the variation of the total
energy with changes in the nuclear coordinates:

Energy

-
Reaction Energy
—
Saddle point AEreaction Equilbrium Constant
riransifion State) AE" — Reaction Rate

Local
Minimum
(,,reactants®)

Global
Minimum
(,,products®)

reaction

Nuclear coordinates



Spectroscopy and States

Apply some kind of oscillating perturbing field with Hamiltonian H1(w) in order to
induce transitions between different states of the system

\

‘ KS" M///P///> A —

Transition Probability

GViank —— A
‘JS > 3 (,Fermi‘s Golden Rule®)
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Spectroscopic Technigues
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Solving the Born-Oppenheimer Equation

% How do we solve the many-particle Born-Oppenheimer equation?

NOT AT ALL!

wm—

= The Born-Oppenheimer Schrdédinger equation can not be solved in closed form
for more than one electron. Not even for the simplest two electron cases.

= We need approximation methods



Approximate Quantum Mechanical Methods

accuracy

( cost :
kHartree-Fock € DenS|ty
Functional
- N r-eep Theory
Semi-Empirical e N\ A :
\ I / . | Configuration Interaction || Multireference
4 R + | Many Body Perturbation Cl, PT,CC
Force Fields ; Coupled Cluster 9 )
\- J AN Y

Exact Solution of the BO-Problem




v Ideally we would always solve the relativistic many particle Schrédinger equation
combined with quantum dynamics for a the entire system including its environment at
finite temperature and inclusion of radiative corrections ...

.... but we cannot do that
.... heither do we need that to answer many useful chemical questions

= Be accurate where it matters!

= Be interested in your error sources!



Queen Mary 2:
ca. 56 400 000 kg

Frank Neese
ca. 80 kg

An error of only 1.3 kcal/mol (=0.056 ev =450 cm-)
IS equivalent to:

- pK,-value : One log-unit
> Redox Potential :56 mV
> Reaction Rate : Factor 10

Possible Consequences:
a) Need extremely accurate theory
b) Need very good error compensation

c) Care about properties other than E,;




Where it matters NHj;: rovibrational bands at =300 K
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Where it matters: Enantioselective Hydrogenation of
Prochiral Enamides

Ho N
\n/ \H/CN _|_H2
O

Minor conformer Major conformer

Steven Feldgus, and Clark R. Landis J. Am. Chem. Soc., 2000, 122 (51), 12714-12727
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How accurate is accurate enough®

Relative Free Energy (kcal.mol-1)
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Where efforts may not be well spent

Example: Host/guest or Drug/Receptor complexes: Complex organic reaction mechanisms

KINETIC-RESOLUTION-TS

O Caldararu, MA Qlsson, C Riplinger, FN, U Ryde Comp. D Walden, O Ogba, P Cheong, C Rip]inger, FN JCTC,
Aid. Molec. Design., 2017, 31, 87 2017, to be submitted

* In both cases, overall not much overall improvement over DFT due to
— " limitations in entropy and solvation contributions



Approximations: The Variational Principle

x | R,p)

Given a trial wavefunction that depends on some parameters p: W tm'al(

The ,Ritz-functional” is:

(v, [ H[®, )
(9, 1 9,0)

For the exact wavefunction E[W] is the exact energy. For any other wavefunction
it is readily shown that:

E[W] > E

exact

E[¥] =

Hence, we can search for a minimum of E[W] with respect to the parameters p to
obtain the best possible approximation within the given Ansatz. The condition for a

stationary point is:
HE[]

= all 1
o (all T)

I



Ansatz: The Hartree-Fock Method

The Hartree-Fock (HF) method is obtain by a specific Ansatz for the trail
wavefunction. It is inspired by the form the wavefunction would have, if the
electron-electron interation would not be there (,independent particle model®)

In this case, the wavefunction would be a simple product of one-electron functions.

However, the overall wavefunction needs to fulfil the Pauli principle. Hence, one
employs a ,,Slater determinant*

Y, Y,
1 w (X ) w o o o L
\Ij — 2 1 2 —
N 2 s 5 Al

The ,auxiliary® one-electron functions that have been introduced are called

,orbitals“. They are the objects to be varied in order to find the best possible
approximation to the true wavefunction.



The Hartree-Fock Roothaan Method

It is difficult to vary the orbitals themselves. Rather what one does is to expand the
orbitals in another set of auxiliary functions, the ,basis set"

U (x) =) ¢ (%)

0

If the basis set {¢} would be mathematically ,complete®, the expansion would be
exact. In practice, we have to live with less than complete basis set expansions.

Carrying out the variation now with respect to the unknown ,MO coefficients® ¢
leads to the famous Hartree-Fock Roothaan equations. The MO coefficients must
satisfy the following coupled set of nonlinear equations:

Fy =e L ZFW(C)CW, =¢ )¢5 (all p.i)

v

e. = Orbital Energyof Orbital 1

F = FockOperator
S = Overlap Matriz



The Fock Operator

The orbital energy is the expectation value over the Fock operator and describes
the average energy of the electron in orbital :

e =(U P10 )= (0 1T +V,y 14 )+ (09, 114 v,)

Where the ,two-electron integral® is:

2 2
w@' (Xl ) wj (XZ) ¢z (X1 )w (X1 )wz (X2 )w (Xg)
— f f dx_dx, — f f f 72 0y dx
1 2 1 2
L =L L =L
Coulomb integral Exchange integral
e Electrostatic interaction between e Electrostatic self-interaction of the ,,smeared” out
~smeared“ out charge distributions winterference density* iy
|il2 and |2  Purely quantum mechanical
e classical® interaction * Arises from the Pauli principle
e Always positive e Always positive (not trivial)

* Does NOT describe a genuine ,,exchange interaction®



Interpretation of the Hartree-Fock Model

Each electron moves in the field created by the nuclei and the average field created
by the other electrons (,mean field model“) - this also called the ,Hartree-Fock
sea“



Solving the Hartree-Fock Equations

The Fock operator depends on its own eigenfunctions! Hence, the Hartree-Fock
equations are highly nonlinear and can only be solved by an iterative process:

-

1. Guess some starting orbitals
— 2. Calculate the Fock operator with the present orbitals
3. Diagonalize the Fock operator to obtain new orbitals

4. Calculate the total energy

Not converged

— 5. Check for convergence

l Converged (Hurray!)

Print results and/or do additional calculations

Disclaimer
Convergence may be slow, may not occur at all or may occur to a high energy solution that may or
may not be physically sensible! Special techniques are often required to reach convergence



How Good is Hartree-Fock Theory?

Consider a Hartree-Fock calculation on the Neon atom (10 electrons)

Exact HF Energy : -128.547 Eh
Exact Experimental Energy : -129.056 Eh '

(NOTE: exact experimental energy= sum of the ten ionization potentials)

Good News: HF recovers 99.6% of the exact energy (after subtraction of relativistic
effects ~99.8%)

Bad News:  The conversion factors work against us!

1 Eh 27 .21 eV
1 ev 23.06 kcal/mol
8065 cm-1

Thus, the small HF error amounts to the huge number of 319 kcal/mol error! In
chemistry one aims at 1 kcal/mol accuracy.

v Very hard to achieve for absolute energies
v We usually want relative energies (much easier but still hard)



Interpretation of the Hartree-Fock Solutions

The primary result of Hartree-Fock calculation (once converged) is the
Total energy

EZVNNJFZW th*%Z(W 14,9,)

And the approximate many-electron wavefunction

vo(X,.,X, )= ‘zpl @DN‘

But what about the ,,secondary quantities®, the orbital energies

£. = roughly the energy it takes to remove the electron from the molecule (,lonization
potential‘) (Koopman‘s Theorem)

And the orbitals themselves:

Y (X) — E c (X) Rigorous: No fundamental importance despite frequent use of HOMO/
0 wet
B LUMOQO and related arguments

In practice: Describes the ,electronic structure” of the molecule in terms of
bonding orbitals, antibonding orbitals or lone pairs.

— Subject of endless fights and debates. However, please remember: Orbitals are NOT observable.



The Electron

Density

In HF Theory:

v Weakly structured
v Always positive

v  Insensitive to bonding



Partial Charges and Bond Orders

As (bio)chemists we want to think of ,,polar groups® and ,,partial charges® and ,,ionic
character” and all that. Hence, we have a desire to divide the total electron density
such that parts of it are ,assigned” to individual atoms.

This is the subject of ,population analysis®. It is never unique and hence very
many different schemes exist.

The easiest is due to Mulliken:

NA — Z P,L:iAS;lVA + S: S: P/;iBS/leB

preA B=A ncAveB

QA =24,—N,

Refined Schemes are the ,,Natural Population Analysis“ (NPA) and the ,Atoms in
Molecules (Bader)“ Analysis.

NOTE: Since patrtial charges are NOT observables there is no ,best” charge. One should stick to one scheme and then look at
trends.



The Spin Density

= v’ Strongly structured
: : . v Positive or negative
& ' v Highly sensitive to bonding
Spin Density &
In HF Theory:
2 2
p" ) =Y (m)] = Y | ()




What is missing from Hartree-Fock Theory”?

Exact Energy =

“Mean Field” Instantaneous electron-

Hartree-Fock electron interaction

Correlation energy= 14, z SI.I.(T 1+ SIY(T 1)
hj Electron pairs o rmi-Correlation Coulomb-correlation
/ 7

Relatively easy due to Extremely hard to

“Fermi hole” in the calculate due to
mean-field interelectronic cusp at

the coalescence point
r,=r;




Orbital Energy
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Coupled Cluster Theory in a Nutshell

U=exp(T)¥, U =|¢ ..o, 6,(r)=>c, ¢, (r)

0
Ansatz Reference determinant MOs K MO BFs
(Coester & Kuemmel) coeffs
Cluster Operator T' =171 +T +T +... Cluster
1 2 3 Amplitudes
T = ta'a T =1 E ta’a’a a
1 ia a a 1 2 4 ab ab b a 1

CC wavefucntion \I!:(l—l—(T1 +T, +.)+XT +T, +..) + )\IJ
—(LHT 4T AT T T, 44T )0

cee O
0
\ J
Y

Connceted excitations disconnected excitations
like ClI, linear (statistically uncorrelated)

Determination of the energy and the cluster amplitudes
B =(¥,|e"He" | T,) Gold Standard:
R, = (1,0, | "He | W) =0 " CCSD(T)

up to 4th power of amplitudes



Accurate Solutions

THE JOURNAL OF CHEMICAL PHYSICS 125, 144108 (2006)

W4 theory for computational thermochemistry: In pursuit of confident
sub-kJ/mol predictions

Amir Karton, Elena Rabinovich, and Jan M. L. Martin®
Department of Organic Chemistry, Weizmann Institute of Science, IL-76100 Rehovot, Israel

Branko Ruscic
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 7 July 2006; accepted 10 August 2006; published online 12 October 2006)
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insurmountably higher than that of the earher W3 theory, while performance 1s markedly superior.
Our W4 atomization energies for a number of key species are in excellent agreement (better than
0.1 kcal/mol on average, 95% confidence intervals narrower than 1 kJ/mol) with the latest
experlmental data obtained from Active Thermochemical Tables. Lower-cost variants are proposed:

.. meaning the (non-relativistic) Schrédinger equation is solved to an accuracy of 0.0001
Eh which is ~99.9999% or ~1 part in 106!

.. For really small systems (1-6 electrons), we can today reach ,crazy accuracy®, e.g.
Nakatsuji calculated the Ho- ground state energy to be -0.597 139 063 123 405 074 834
134 096 025 974 142 a.u. (36 significant digits!)

Nakatsuiji, JCP 113, 2949 (2000); Nakatsuji, Davidson, JCP 115, 2000 (2001).



Problems with Coupled Cluster Theory
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Saving Time in

Exploit Sparsity!

Compress Data!

—lectronic Structure Calculations
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Approximation 1: Pair Approximation

Ecorr — ichb <Z'] H ab> — %Zgz’j

ijab
0035{ . Pairenergy -
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FN, Wennmohs, F.; Hansen, A. 2009, J. Chem. Phys. 130, 114108



Approximation 2: Virtual Space truncation

~ 1 TR
S5 3 Z Cab <7’]

a,bepair—domain iy

v Truncated canonical virtual orbitals?

= BAD ideal

v Projected atomic orbitals (Pulay, Werner, Schutz), localized virtual orbitals
(FOrner, Jorgensen, ...)

&é\’)\ s G ™ 5 ™
[\ %\ / . % *_ S A *, //M'
<y Y v i o7

= |t works, but for high accuracy (99.9%) the domains become impractically large
= Need ,compaction” of the space



Most Compact Expansion: Natural Orbitals
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th linear DLPNO-CCSD(T)

IONS Wi

Huge Calculat

N
S
o
o &
Q0
LC®
? 2
WB
QD N
]
<
n
N
=
|
% 9
3 ©
~
S 3
~ O
Ho1
Lo
(49
@,
n
N
= o
9
)
Mm
-mM
fe
m6
S
|-
O

22621 Basis functions

15062 Basis functions

12705 Basis functions

62h/64 cores
(CIM-DLPNO-CCSD(T))

Y. Guo, FN, 2017, in preparation

18h/4 cores

10 d/4 cores

C. Riplinger, P. Pinski, U. Becker, E.F. Valeev, FN, 2016, 144, 024109



)
3

Electron Density (el/bohr’)

DFT:
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Electron Density of the CO molecule

Sasis for the Hohenberg-Kohn Theorems

0
—427
or 4

fp(r)dr:N
2

We can reconstruct the
nuclear positions and
charges from the electron
density

a

This means, we can

reconstruct the BO

Hamiltonian of the
molecule from p(r) alone

lim

r—0

ﬁ(r)zO




The Hohenberg Kohn-Theorems

If we know the BO Hamiltonian of the molecule we could (in principle) solve the Schrodinger

equation. Hence, the exact N-particle wavefunction, the exact energy and all expectation

values are functionals of the electron density!

Knowing Deduce Deduce Solve! e
orf —— VewN —— Hgg —— EY

The “big dream” is to go directly from the electron density to the exact energy. From the

DFT logics this must be “somehow” possible, but we don’t know how!

1) The existance of the “universal” functional E[p] is guaranteed by the first Hohenberg-
Kohn (HK) theorem.

2) The second HK theorem establishes a variational principle that states that E[p’] (p’
being a test density) > E[p]



The DFT Functional

We can start to approach the functional by separating the parts inspired by HF theory that
we know we can write exclusively in terms of the density:

E[/O] =V +Vox [p]—l—J[p]—l—T[p]—I—E)/(C [:0]

Vin Nuclear Repulsion (trivial):

Vo Lo = —ZZAfP<r>’?Aldr Electron-Nuclear Attraction (ok)
J[p]:§z<ij|ij>:%ffp(rl)p(rz)rlgldrldrzCoulomb Energy (ok)

I'lp] Kinetic Energy (unknown)

E. [p]1=K[p]+Clp] Exchange and Correlation (unknown)



The Kohn-Sham Construction (l)

DFT only became a practical tool after an ingenious trick of Kohn-Sham. They have
considered a fictitious model system of independent particles that share the exact electron

density with the real system.

The wavefunction for such a system is a single Slater determinant (Kohn-Sham determinant)
IOKS (r) — Zfl wi (X> ‘2 dS = pexact (r)

Re-inserting p(r) into the energy expression yields the exact E.

E[,O] =V +1, [p]+VeN [,0]+J[:0]+EXC [,0]

The “noninteracting” kinetic energy is:

T [p]|=—=1> (¢ 1V [ 4)

i

But now the exchange correlation contains the missing part of the kinetic energy:

Ly [IO] = Eyc [IO] ‘|‘T[/0] —1 [/0]



The Kohn-Sham Construction (l)

The Kohn-Sham orbitals are found from the Kohn-Sham equations:
{3V v, ()} () =24 (%)
The effective Kohn-Sham potential is defined by:

Verr (r)= _Z Zry + fp(l‘2 )1 dr, + Ve (1)
A

And the XC contribution is defined by a “functional derivative”:

This is the celebrated formal apparatous of DFT! If we would know E,, these equations would
constitute an exact framework. But we don’t (and likely never will)!

However, much progress has been made by guessing approximate E,-[p] and inserting them
into the Hohenberg-Kohn-Sham machinery.



Ab Initio DFT Potentials

There are (expensivel) ways to construct very good KS potentials from accurate densities
(red). These can be compared with “typical” present day potentials (blue).

@)
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The presently used potentials are far from being correct and all present day DFT
results rely on cancellation of large errors.



51g Problems may still exist ...

NN

AE

= +4+1.9%0.5 kcal/mol Exp.
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Numerical

Results

Total, correlation and exchange energies of the Neon atom using the ab initio CCSD(T) method and various standard
functionals (deviations from the wavefunction results in mEh).

Etot Ecorr EX
CCSD(T) -128.9260 -0.379 -12.098
-129.0640 (rel)
BP86 -128.9776 (-52) -0.388 (- 9) -12.104 ( -6)
PBE -128.8664 (+60) -0.347 (+32) -12.028 (+70)
BLYP -128.9730 (-47) -0.383 (- 4) -12.099 ( -1)
TPSS -128.9811 (-55) -0.351 (+28) -12.152 (-54)
B3LYP -128.9426 (-17) -0.452 (-73) -12.134 (-36)
B2PLYP -128.9555 (-30) -0.392 (-13) -12.103 (- 5)
Exp -129.056

Z} Wavefunction theory is very accurate (but also very expensive). DFT results vary widely
among different functionals and either over- or undershoot. However, total energies are

not important in chemistry — relative energies matter.



