

Max Planck Institute for Chemical Energy Conversion Stiftstr. 34-36 Mülheim an der Ruhr

Computational chemistry with ORCA

Ragnar Björnsson, Giovanni Bistoni, Dimitrios Pantazis

Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany

Today's topics

9:00-12:00

General ORCA usage (Ragnar)

DFT and basis sets (Dimitrios)

Reactivity (Giovanni)

13:30-14:00 Tutorial on use of PC² cluster systems

14:00-18:00 ORCA Tutorial

The ORCA project

- A molecular quantum chemistry program written originally by Prof. Frank Neese.
- Developed at the Max Planck Institut für Kohlenforschung, Mülheim, Germany.
- The binaries of ORCA are available free of charge for academic users.

ORCA is a **flexible**, **efficient and easy-to-use** general purpose tool for quantum chemistry with specific emphasis on spectroscopic properties of open-shell molecules. It features a wide variety of standard quantum chemical methods ranging from semiempirical methods to DFT to single- and multireference correlated ab initio methods. It can also treat environmental and relativistic effects.

Due to the user-friendly style, ORCA is considered to be a helpful tool not only for computational chemists, but also for chemists, physicists and biologists that are interested in developing the full information content of their experimental data with help of calculations.

https://orcaforum.cec.mpg.de

The ORCA project

Hartree-Fock

RHF, UHF, ROHF Direct, Semidirect, Conventional, Approx: RI, RIJ-COSX, RI-JK Converger: (K)DIIS, NR, SOSCF

Electron Correlation

MP2/RI-MP2 CCSD(T),QCISD(T),CEPA,CPF (all with/without RI, Local) MR-MP2, MR-MP3, MR-MP4(SD) MR-CI, MR-ACPF, MR-AQCC NEV-PT2, Extrapolation Schemes

Relativistic Methods

DKH, ZORA, IORA, Picture Change Effects, All electron basis sets, Effective core potentials (ECPs)

Semiempirical

INDO/S,MNDO, AM1,PM3,NDDO/1

Local Methods

DLPNO-MP2 (RF,UHF), CIM, DLPNO-CCSD(T) (RHF,UHF), DLPNO-MP2-F12 DLPNO-NEVPT2(-F12), LPNO-CCSD-F12, Mk-LPNO-MRCCSD(T)

Density Functional

LDA, GGA, Hybrid Functionals Double hybrid functionals, RI-Approx, RKS,UKS,ROKS, HF-3c, PBEh-3c, Range-Separated Functionals

Excited States

TD-DFT/CIS+gradients MR-CI/DD-CI/SOR-CI, ROCIS, sTDA/sTDDFT, EOM/STEOM CCSD

Multi-Reference

MR-CI/DD-CI/SOR-CI CAS-SCF, ICE-CI, FIC-MRCI, Mk-LPNO-MRCCSD(T), MREOM-CCSD

Molecular Properties

Analytical Gradients (HF,DFT,MP2,TD-DFT), Geometries, Trans. States Polarizabilities, Magnetizabilities, Solvation Models (COSMO & C-PCM) Analytical Hessian, IR, Raman and Resonance Spectra, EPR-Parameters (g,A,D,J,Q), Mössbauer-Parameters (δ,ΔE_Q) NMR (GIAOs), ABS ,CD, MCD Spectra Population Analysis, NBOs, Localization, Multipole Moments, Energy Decomposition Schemes, Stability Analysis, FOD

Availability and installations

- Binaries available for: Windows, Linux and Mac
- Installation programs (Windows, Mac) or compressed archive (Linux).
- OpenMPI parallelization.

Register at https://orcaforum.kofo.mpg.de

sign-in and download binaries and the manual.

Downloads - Categories		Search downloa
CATEGORY / DESCRIPTION	FILE(S)	LATEST DOWNLOAD
ORCA 4.x End User License Agreement (EULA)	1	ORCA 4.x software EULA bugchucker Fri Feb 08, 2019 1:47 pm
ORCA 4.2.1	13	ORCA 4.2.1, Windows, 64bit, .zip Archive bugchucker Fri Dec 06, 2019 3:45 pm
ORCA 4.2.0	13	ORCA 4.2.0, Windows, 64bit, .zip Archive bugchucker Fri Aug 09, 2019 12:37 pm
ORCA 4.1.2	11	ORCA 4.1.2, Linux, x86-64, shared- version, .tar.zst Archive (OpenMPI 2.1.5) bugchucker Fri May 03, 2019 4:05 pm
ORCA 4.1.1	15	ORCA 4.1.1, Windows, 64bit, Installer Version bugchucker Fri Feb 15, 2019 10:36 am
ORCA 4.1.0	14	ORCA 4.1.0, Linux, x86-64, shared- version, .tar.zst Archive (OpenMPI 2.1.5) bugchucker Sun Dec 16, 2018 5:54 pm
ORCA Manuals	5	ORCA 4.2.1 Manual bugchucker Wed Oct 30, 2019 10:20 am
ORCA Jump-Start Guide	1	ORCA Jump-Start Guide bugchucker Wed Jan 23, 2019 10:09 am
CASSCF Tutorial	1	CASSCF Tutorial bugchucker Thu Nov 21, 2019 2:02 pm
Avogadro (ORCA enhanced version)	1	Avogadro, Windows Version bugchucker Tue Apr 02, 2019 12:36 pm

Help with setting up ORCA:

https://sites.google.com/site/orcainputlibrary/setting-up-orca

Setting up on a cluster for parallel execution

- OpenMPI parallelization. Use recommended version.
- Put ORCA directory in \$PATH and \$LD_LIBRARY_PATH
- Run parallel orca with full path : /full/path/to/orca input.inp

Use local scratch directory if available.

Make sure job-submission script *cd*'s to scratch-directory and runs ORCA from there. All tmp files will then be created there instead of being transferred constantly over network.

Help with setting up ORCA, example job-submission scripts etc. https://sites.google.com/site/orcainputlibrary/setting-up-orca

How to do a basic ORCA calculation

- Use a command-line text editor (vim, emacs, nano) to create an inputfile named e.g. test.inp.
- Inputfile contains theory-level, job directives and usually coordinates.

! PBE def2-SVP opt

*xyz 0 1 H 0.0 0.0 0.0 F 0.0 0.0 1.0

How to do a basic ORCA calculation

- Use a command-line text editor (vim, emacs, nano) to create an inputfile named e.g. test.inp.
- Inputfile contains theory-level, job directives and usually coordinates.

simple input-line

coordinate block

! PBE def2-SVP opt

 theory
 basis set
 job-type

 *xyz 0 1
 charge: 0

 H 0.0 0.0 0.0
 spin multiplicity: 1

 F 0.0 0.0 1.0
 in Å

A more complicated inputfile

An even more complicated inputfile

! MRCI+Q def2-TZVP Normalprint MOREAD Usesym

%moinp "orbitals.gbw" %pointcharges "pointcharges.pc" %casscf trafostep ri nel 5 norb 4 mult 2,4 end %pal nprocs 12 end %mrci Tsel 1e-8 Tpre 1e-6 Newblock 4 * Nroots 10 Refs CAS(5,4) end End Newblock 2 * Nroots 10 Refs CAS(5,4) end end end

Run the inputfile

• Directly:

orca test.inp > test.out

only for short test jobs

 Submitting job to job scheduler using a job-script: sbatch orca_jobscript.sh test

Ideally the job-submission script copies inputfile and other needed files to a local scratch directory, starts the job there, copies back the result files when job is done

Read the outputfile

- Open the outputfile using a command-line program: less, vim, emacs
 - Other outputfiles are also sometimes created:
 - GBW file: binary file containing geometry, basis, WF
 - XYZ file containing optimized geometry
 - Property file containing energy, geometry, properties
 - Or open the outputfile using a GUI visualization program:
 - geometry optimizations
 - frequencies
 - orbitals

Visualization programs

- ORCA is completely command-line based.
- Useful visualization programs to use with ORCA:
 - <u>Avogadro</u>
 - <u>Chemcraft</u>
 - Molden
 - Chimera
 - VMD

Chemcraft

<u>chemcraftprog.com</u> Commercial, 150-day trial

Tools AutoOptimization Force Field: Uff Steps per Update: 4 Object Start Display Types Start Display Types Settings... Add Duplicate Remove

Avogadro

http://avogadro.cc Free, open-source

Type of jobs

• Single-point energy (on a single geometry):

- Hartree-Fock level: RHF or UHF
- DFT level: RKS or UKS
- post-HF level: MP2, CCSD(T)
- multireference wavefunctions: CASSCF, NEVPT2, MRCI, MRCC

• Molecular property job (single-point):

• NMR, EPR, Mössbauer properties

Geometry optimization: !Opt

- If method has gradient available
- Find minimum or saddle-point (Opt-TS)

Frequency job: !Freq or !NumFreq

- Analytical or numerical Hessian available for DFT methods and MP2.
- Confirm minimum or saddlepoint
- Calculate thermodynamical corrections or get IR/Raman spectra

Excited state calculations

- Calculate UV-VIS, CD, XAS, XES, MCD, Resonance Raman spectra
- Possible at TDDFT, CASSCF, NEVPT2, EOM-CCSD levels
- Molecular dynamics (see talk by Martin Brehm)
 - If method has gradient available

Output of Single Points

We first echo the input file and some references to the basis sets used. Then you get information on the job-type, the input coordinates in various formats and the basis set	Next the SCF program is taking ov details about the SCF settings	er and commences with giving all
**************************************	 SCF SETTINGS Hamiltonian:	
CARTESIAN COORDINATES (ANGSTROEM)	Density Functional Method Exchange Functional Exchange X-Alpha parameter XAlpha Becke's b parameter XBeta	DFT (GTOs) B88 0.666667 0.004200
C 0.000000 0.000000 0.000000 O 0.000000 0.000000 1.130000	Correlation Functional Correlation LDA part of GGA corr. LDAOpt Gradients option PostSCFGGA Hybrid DFT is turned on	LYP VWN-5 off
BASIS SET INFORMATION There are 2 groups of distinct atoms	Fraction HF Exchange ScalHFX Scaling of DF-GGA-X ScalDFX Scaling of DF-GGA-C ScalDFC	0.200000 0.720000 0.810000
Group 1 Type C : 7s4p1d contracted to 3s2p1d pattern {511/31/1} Group 2 Type O : 7s4p1d contracted to 3s2p1d pattern {511/31/1} Next the one-electron integrals are calculated (and perhaps also the two- electron integrals if conv if requested for "conventional SCF")	General Settings:Integral filesIntNameHartree-Fock typeHFTypTotal ChargeChargeMultiplicityMultNumber of ElectronsNELBasis DimensionDimNuclear BepulsionENuc	JOB-01 RHF 0 1 14 28
ORCA GTO INTEGRAL CALCULATION	Nuclear Repuision Enuc	22.4770302035 Em
BASIS SET STATISTICS AND STARTUP INFO	Convergence Tolerance:Energy ChangeTolEMax Density ChangeTolMaxP	1.000e-008 Eh 1.000e-007
<pre># of primitive gaussian shells 24 # of primitive gaussian functions 48 # of contracted shell 12 # of contracted basis functions 28</pre>	RMS Density Change TolRMSP DIIS Error TolErr	1.000e-008 1.000e-007
Highest angular momentum2Maximum contraction depth5Integral threshholdThreshIntegral threshholdThresh	Diagonalization of the overlap matri Smallest eigenvalue Time for diagonalization	x: 1.911e-002 0.010 sec
Primitive cut-off TCut 3.000e-012	Total time needed	0.040 sec

The integration grid is produced and the initial guess performed

Now we are ready to start the SCF iterations

SCF ITERATIONS

***	Starting	incremental	Fock	matrix	formation	***
Turning on DIIS						

	!	ITERATION	0			
Total Energy	-	-112.951951547431	 Eh			
Energy Change	:	-112.951951547431	Eh			
MAX-DP	:	0.674569966353				
RMS-DP	:	0.053899776162				
Actual Damping	:	0.0000				
Int. Num. El.	:	14.00002071 (UP=	7.00			
Exchange	:	-10.98287769				
Correlation	:	-0.58429246				
DIIS-Error	:	0.450135783168				

Which hopefully eventually converge and:

* SUCCESS			*		
*	SCF CONVERGE	D AFTER	11	CYCLES	*
***	******	******	****	******	*******

The total energy and its components are printed

TOTAL SCF ENERGY

Total Energy	:	-113.17273851	Eh	-3079.50944 eV
Components:				
Nuclear Repulsion	:	22.47789027	Eh	611.63913 eV
Electronic Energy	:	-135.65062877	Eh	-3691.14856 eV
One Electron Energy	JY:	-198.09397475	Eh	-5390.27572 eV
Two Electron Energy	JÀ :	62.44334598	Eh	1699.12715 eV
Virial components:	:			
Potential Energy	:	-225.62136955	Eh	-6139.31540 eV
Kinetic Energy	:	112.44863104	Eh	3059.80596 eV
Virial Ratio	:	2.00643945		

Next you get the orbital energies printed:

ORBITAL ENERGIES

NO	occ	E(Eh)	E(eV)
0	2.0000	-19.243280	-523.6231
1	2.0000	-10.301611	-280.3141
2	2.0000	-1.152619	-31.3636
3	2.0000	-0.568518	-15.4698
4	2.0000	-0.476766	-12.9731
5	2.0000	-0.476766	-12.9731
6	2.0000	-0.373742	-10.1698
7	0.0000	-0.026298	-0.7156
8	0.0000	-0.026298	-0.7156
9	0.0000	0.221613	6.0303
10	0.0000	0.400346	10.8937
11	0.0000	0.457384	12.4458
12	0.0000	0.457384	12.4458

• • •

Now comes the "soft science" (e.g. population analysis of the SCF density matrix

MULLIKEN ATOMIC CHARGES

0 C : 0.016669 1 O : -0.016669

Sum of atomic charges: -0.0000000

MULLIKEN REDUCED ORBITAL CHARGES

						-	
0	С	s	:	3.834569	s	:	3.834569
		pz	:	1.009723	р	:	2.073008
		рх	:	0.531642			
		ру	:	0.531642			
		dz2	:	0.027088	d	:	0.075754
		dxz	:	0.024333			
		dyz	:	0.024333			
		dx2y2	:	0.00000			
		dxy	:	0.00000			
1	0	S	:	3.737862	s	:	3.737862
		pz	:	1.381818	р	:	4.256855
		рх	:	1.437518			
		ру	:	1.437518			
		dz2	:	0.008940	d	:	0.021953
		dxz	:	0.006506			
		dyz	:	0.006506			
		dx2y2	:	0.00000			
		dxy	:	0.00000			
		_					

MULLIKEN OVERLAP CHARGES

B(0-C , 1-O) : 1.3340

The Löwdin analysis contains a detailed breakdown of the MOs in terms of angular momentum components of each atom. This helps a lot when you select the orbitals for plotting.

LOEWDIN ATOMIC CHARGES 0 C : -0.050462 1 O : 0.050462

etc.

LOEWDIN REDUCED ORBITAL POPULATIONS PER MO

THRESHOLD FOR PRINTING IS 0.1%

		0	1	2	3	4	5
ORB-1	EN	-19.24328	-10.30161	-1.15262	-0.56852	-0.47677	-0.47677
OCC		2.00000	2.00000	2.00000	2.00000	2.00000	2.00000
0 C	s	0.0	99.5	18.6	11.5	0.0	0.0
0 C	pz	0.1	0.0	16.7	4.8	0.0	0.0
0 C	рх	0.0	0.0	0.0	0.0	6.9	20.9
0 C	ру	0.0	0.0	0.0	0.0	20.9	6.9
0 C	dz2	0.1	0.0	2.4	0.0	0.0	0.0
0 C	dxz	0.0	0.0	0.0	0.0	0.5	1.5
0 C	dyz	0.0	0.0	0.0	0.0	1.5	0.5
10	s	99.8	0.1	54.7	20.8	0.0	0.0
10	pz	0.0	0.4	7.3	62.3	0.0	0.0
10	рх	0.0	0.0	0.0	0.0	17.4	52.4
10	ру	0.0	0.0	0.0	0.0	52.4	17.4
10	dz2	0.0	0.1	0.3	0.6	0.0	0.0
10	dxz	0.0	0.0	0.0	0.0	0.1	0.3
1 0	dyz	0.0	0.0	0.0	0.0	0.3	0.1
		6	7		•	10	11
		-0 37374	-0 02630	-0 02630	9	10	11
		2 00000	0.02030	0.02030	0.22101	0.40033	0.43738
		2.00000					
0 C	s	49.2	0.0	0.0	33.5	60.9	0.0
0 C	pz	39.3	0.0	0.0	46.5	35.3	0.0
0 C	px	0.0	15.2	54.7	0.0	0.0	15.5
0 C	ру	0.0	54.7	15.2	0.0	0.0	81.4
0 C	dz2	0.8	0.0	0.0	7.8	1.2	0.0
0 C	dxz	0.0	0.4	1.5	0.0	0.0	0.1
0 C	dyz	0.0	1.5	0.4	0.0	0.0	0.3
10	s	2.0	0.0	0.0	12.0	0.6	0.0
10	pz	8.8	0.0	0.0	0.2	1.0	0.0
10	рx	0.0	5.9	21.2	0.0	0.0	0.3
10	ру	0.0	21.2	5.9	0.0	0.0	1.5
10	dz2	0.0	0.0	0.0	0.0	0.9	0.0
10	dxz	0.0	0.2	0.9	0.0	0.0	0.1
10	dyz	0.0	0.9	0.2	0.0	0.0	0.7

Using orca_plot

orca_plot filename.gbw -i

ORCA creates a GBW binary file that contains information about the wavefunction and orbitals. By using the orca_plot program we can calculate isosurfaces for particular orbitals and print as e.g. Cube files. Cube files can be opened in several programs.

Print orbital information to ORCA output PBE def2-SVP printmos printbasis

Open outputfile in Chemcraft/Avogadro that creates the isosurfaces from the MO information.

Geometry optimizations

- Geometry optimizations are usually performed at the DFT level:
 - Availability of analytical gradients usually needed.
- Minimizes the energy by changing the coordinates.
- Use the ! Opt keyword in the inputfile to do an optimization
- ORCA uses a Quasi-Newton optimizer with BFGS update and uses redundant internal coordinates.

The optimization is considered converged when these criteria are fulfilled:

RMSG < 1E-4 Eh/auMaxG < 3E-4 Eh/auTolE < 5E-6 EhRMSD < 2E-3 auMaxD < 4E-3 au

After calculating the SCF energy and the gradient of the energy, a And a new geometry is proposed: relaxation is step is carried out:

ORCA GEOMETRY RELAXATION STEP							
Number o	f at	oms			4		
Number o	f in	ternal coordin	ates		7		
Current 1	Ener	дХ			-114.3	317745134	Eh
Current gradient norm				0.2	207887808	Eh/bohr	
Maximum a	allc	wed component	of the step		0.300		
Current ·	trus	t radius			0.300		
Evaluating the initial hessian				(Almlo	oef) done		
Projecting the Hessian				done			
Forming [·]	the	augmented Hess	ian		done		
Diagonal	izin	g the augmente	d Hessian		done		
Last ele	ment	of RFO vector	•		0.9579	975075	
Lowest e	igen	values of augm	ented Hessian	1:			
-0.0571	7470	8 0.151693870	0.36094984	5 0.42	25465740	0.50116	6791
Length o	f th	e computed ste	P		0.2994	135193	
The fina	l le	ength of the in	ternal step		0.2994	135193	
Converti	ng t	he step to car	tesian space	:			
Transform	ming	coordinates:					
Iter	0:	RMS(Cart)=	0.0824560429	RMS (Ir	nt)=	0.1127292	561
Iter 3	1:	RMS(Cart)=	0.0024951498	RMS (Ir	nt)=	0.0033197	589
Iter 2	2:	RMS(Cart)=	0.0002432861	RMS (Ir	nt)=	0.0003067	902
Iter 3	3:	RMS(Cart)=	0.0000185328	RMS (Ir	nt)=	0.0000231	161
Iter 4	4:	RMS(Cart)=	0.000012690	RMS (Ir	nt)=	0.000015	779
Iter	5:	RMS(Cart)=	0.000000832	RMS (Ir	nt)=	0.000001	034
Iter	6:	RMS(Cart)=	0.000000054	RMS (Ir	nt)=	0.000000	067
done							
Storing :	new	coordinates			Done		

The status of the geometry convergence is printed:

Item	Ge value	ometry converger	nce Tolerance	Converged		
RMS gradient	0.078	83145	0.00010000	NO		
MAX gradient	0.142	33649	0.00030000	NO		
RMS step	0.113	17586	0.00200000	NO		
MAX step	0.185	11086	0.00400000	NO		
-						
Max(Bonds)	0.0980	Max(Angles)	4.89			
Max(Dihed)	0.00	Max(Improp)	0.00			

The optimization has not yet converged - more geometry cycles are needed

Redundant Internal Coordinates	
--------------------------------	--

(Angstroem and degrees)

Defir	nition				Value dE/dq	Step	New-Value
1. B(O 2. B(H 3. B(H 4. A(H 5. A(H 6. A(H	1,C 2,C 3,C 2,C 3,C 3,C 3,C	0) 0) 0,0 0,0 0,0 0,H	1) 1) 2)		1.1500 -0.142336 1.0000 -0.103355 1.0000 -0.103355 115.00 -0.017685 115.00 -0.017685 130.00 0.035370	0.0535 0.0980 0.0980 2.44 2.44 -4.89	1.2035 1.0980 1.0980 117.44 117.44 125.11
7. I(O	1,H	З,Н	2,C	0)	0.00 -0.000000	0.00	0.00

GEOMETRY OPTIMIZATION CYCLE 2

Then the next SCF is done and the next gradient calculated, a new geometry is proposed until (hopefully) finally:

Following this statement one more energy calculation is performed in order to make sure that the energy and properties are really done at the stationary point of the PES.

Constraints and relaxed scans

• Specific atoms or internal coordinates can be frozen during the optimization.

Constraining bond (B) between atom 0 and atom 1.

! Opt %geom Constraints {B 0 1 C} end

• A relaxed scan where an internal coordinate is kept frozen and gradually changed while all other coordinates are minimized

! Opt %geom Scan B 0 1 = 1.0, 3.0, 12 end end

Scanning bond (B) between atom 0 and atom 1 from 1.0 Å to 3.0 Å in 12 steps

Restarting calculations in ORCA

 If a geometry optimization failed to converge or crashed it is easiest to replace the coordinates of the inputfile with coordinates from the last step in the outputfile.

Restarting a single-point energy calculation (or feed-in alternative guess orbitals):

! PBE def2-SVP def2/J
! MOREAD
%moinp "otherorbitals.gbw"

Efficient DFT in ORCA: the RI approximation

- If one performs a regular non-hybrid DFT calculation, ORCA by default uses the resolution of identity (RI or RI-J) approximation, a.k.a. density fitting.
- The electron density is fit to an auxiliary basis set
- Speeds up the calculation of Coulomb integrals 10-100 times.
- Negligible errors in geometries and frequencies.
- Very small errors in absolute energies, error mostly cancels out in relative energies. Error depends on size of auxiliary basis set. Accurate general auxiliary basis sets available.

Efficient hybrid DFT in ORCA: RI-JK and RIJCOSX

 If using a hybrid density functional (e.g. B3LYP, PBE0, TPSSh) i.e. method has HF exchange, ORCA by default makes no approximation to the present Coulomb and Exchange integrals.

RI-JK

Resolution of identity for Coulomb and Exchange integrals. Not as efficient as RI-J. Requires different auxiliary basis sets.

! B3LYP RIJK def2-SVP def2/JK

RIJCOSX

Resolution of identity for Coulomb (C) and Chain-of-sphere (COS) numeric integration for Exchange (X). Uses integration grid. Very efficient, especially for large molecules. Slightly larger errors due to grid dependence, controlled by grid size.

! B3LYP RIJCOSX def2-SVP def2/J GridX4

Solvation models in ORCA

- The vacuum approximation (i.e. modelling completely isolated molecules) will not always work when modelling molecular systems in solution.
- Especially for charged molecules, cations and especially anions, accounting for solvation effects becomes necessary.
- ORCA includes a polarizable continuum model that crudely accounts for solvation effects implicitly by calculating the interaction between a molecule inside a cavity of a polarizable continuum characterized by the dielectric constant of the solvent.
- Straightforward to use:
 ! PBE def2-SVP CPCM(Water) Opt
 - Single-point energies, optimizations and frequencies are possible

What can I /can't I model with ORCA?

- ORCA is a molecular quantum chemistry code, using atom-centered basis functions.
- ORCA does not have periodic boundary conditions
- Modelling solids requires taking care of boundary effects

Disadvantages:

Truncation or boundary effects

Advantages: Going beyond DFT: WFT

QM/MM and ORCA

- Interfaces available to various popular QM/MM or MM codes:
 - Chemshell: <u>https://www.chemshell.org</u>
 - NAMD: <u>http://www.ks.uiuc.edu/Research/qmmm/</u>
 - GROMACS: <u>http://www.user.gwdg.de/~ggroenh/qmmm.html</u>
 - Cuby: <u>http://cuby4.molecular.cz</u>
 - pDynamo: https://sites.google.com/site/pdynamowiki/

ORCA QM/MM

- Latest ORCA version (4.2.1) has built-in QM/MM functionality.
- Currently supports the CHARMM protein forcefield.

Heavy elements and Relativistic approximations in ORCA

- The core electrons of heavy elements move faster than valence electrons
- Account for relativistic motion of electrons in heavy elements thus becomes vital.
- Two main ways of dealing with this:

All-electron (scalar) relativistic approach

• ZORA

• DKH

Necessary for core properties. Requires special basis sets

Effective core (pseudopotential)

Good for energies, geometries. Automatic assignment when using the Ahlrichs def2 basis set family

		TI	h	e	P	e	er	iC	C		С	T	a	b	le)	
1 H																	2 He
3	4		5 6 7 8 9											10			
Li	Be		B C N O F											Ne			
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	³⁴	35	³⁶
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Кг
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
		57 La	58 Ce	⁵⁹ Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Molecular and spectroscopic properties in ORCA

- NMR Chemical shift calculations using a GIAO-DFT approach
- NMR J-coupling constants at the DFT level
- g-tensors: DFT level and CASSCF-NEVPT2 level
- hyperfine coupling tensors: DFT level and CCSD level
- Mössbauer isomer shifts and quadrupole couplings
- UV-VIS/CD/XAS absorption spectra using TDDFT or WFT.
- XES calculations using a 1-electron DFT model or WFT.
- Calculations of Resonance Raman and Nuclear Resonance Vibrational spectra
- RIXS spectra via a ROCIS WFT approach

Excited states in ORCA: TDDFT

• Time-dependent DFT (TDDFT) for the calculation of excited states. With and without Tamm-Dancoff approximation

Excitation described as an orbital excitation from orbital 4a (HOMO) to 5a (LUMO)

Analysis of excited states: difference density analysis, natural transition orbitals

Example: TDDFT computations of molybdenum X-ray absorption spectra compared to experiment

Bjornsson, R.; Lima, F. A.; Spatzal, T.; Weyhermueller, T.; Glatzel, P.; Einsle, O.; Neese, F.; and DeBeer, S. Chemical Science. 2014, 5, 3096-3103.

[Mo(I

Multireference treatments

- ORCA has a state-of-the-art CASSCF module for multiconfigurational SCF.
- Dynamic correlation via NEVPT2, CASPT2, MRCI, MRCI+Q, MRCC, MREOM-CC.
- Large active space (50 orbitals) approximate CASSCF: DMRG and ICE-CI

ORCA Common Errors and Problems

- Sudden ORCA terminations: Often due to insufficient memory or disk space. Rare with DFT, common problem with WFT calculations.
- Imaginary modes in a vibrational frequency calculation Small frequencies: Numerical noise. Increase DFT grid or SCF/Opt thresholds Large frequencies: Probable convergence to an n-th order saddlepoint.
- Molecule explodes during optimization: Problem with internal coords
- Energy increases during optimization: Noisy gradient (check grids)
- Strange energy or property:

possible convergence to an excited state or unstable solution

- ORCA result differs from *ProgramX* result:
 - Check functional definition (e.g. B3LYP has multiple definitions)
 - Check if basis set is the same.
 - Compare program defaults (e.g. Tamm-Dancoff approximation in TDDFT).
- SCF will not converge

https://sites.google.com/site/orcainputlibrary/orca-common-problems

VIBRA	ATIONAL FREQUENCIES
0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	-646.34 cm**-1 ***imaginary mode***
7:	-467.58 cm**-1 ***imaginary mode***
8:	-109.76 cm**-1 ***imaginary mode***
9:	7.86 cm**-1

SCF convergence issues

- Check the basics Are coordinates reasonable? Charge and spin multiplicity correct?
- If close to convergence, restart calculation, possibly increase MaxIter
- Try converging with a simpler method (small-basis HF or DFT) and read-in orbitals as better guess orbitals
- Change SCF algorithm or settings:
 - Turn off/on SOSCF (!SOSCF or !NOSOSCF)
 - Try KDIIS (IKDIIS)
 - Change the DIIS extrapolation settings (%scf DIISMaxEq 20 end)
 - Try adding damping or a levelshift. (%scf Shift Shift 0.1 ErrOff 0.1 end end)
 - Try Slowconv (!Slowconv)
 - Recalculate the Fock matrix more often (%scf directresetfreq 1 end)

https://sites.google.com/site/orcainputlibrary/scf-convergence-issues

SCF converged to something strange

- Any SCF calculation (DFT or HF) can converge to something not desirable.
 - excited state (i.e. a different occupation of orbitals)
 - saddlepoint in orbital space instead of a minimum
- Rare but happens in cases of high symmetry (e.g. atoms, diatomics, or other high-symmetry geometries, e.g. benzene and ferrocene).
- This problem can subsequently affect a post-HF calculation, e.g. MP2, coupled-cluster.

Example:

! B3LYP def2-TZVPP tightscf kdiis *xyz 0 1 I 0.0 0.0 0.0 I 0.0 0.0 2.683

Will result in an SCF solution with an energy of -595.256765 hartree.

While nothing seemingly suspicious about this straightforward restricted DFT calculation, the energy is completely wrong.

SCF converged to something strange

The ORCA Input Library

A Wiki-like website for ORCA users.

Inputfile examples, tips & tricks, tutorials

https://sites.google.com/site/orcainputlibrary

Maintained by Ragnar Bjornsson