

Short Introduction to Otus

Paderborn University, Germany
Paderborn Center for Parallel Computing

Topics for Today

- 1. What is Otus
- 2. Timeline
- 3. How to Access
- 4. Software
- 5. Details on Nodes

What is Otus?

Otus: The new HPC System at PC2 (Otus-NHR)

- 743 compute nodes, 108 NVIDIA H100-94GB GPUs
- 6 PB GPFS parallel file system
- Infiniband 200/400 Gbit/s interconnect
- Funded by the NHR Alliance (nhr-verein.de)

Nodes	Partition	Count	
Compute nodes	normal	636	2xAMD 9655, 192 cores, 768 GiB RAM
Large-memory nodes	largemem	48	2xAMD 9655, 192 cores, 1536 GiB RAM
GPU-Nodes	gpu	27	2xAMD 9655, 192 cores, 768 GiB RAM, 4xNVIDIA H100-94GB NVLINK
FPGA-Nodes	fpga	32	2xAMD 9655, 192 cores, 768 GiB RAM, Planned: FPGAs and NVIDIA A40
(Huge-memory nodes in planning)			(Planned >=3 TB RAM)

© Paderborn University / Stefan Rohde

More details http://pc2.uni-paderborn.de/go/otus

Timeline

Otus-NHR

- 2024: procurement process
- Spring 2025: delivery and setup of system
- August 2025: acceptance of the system and test operation
- September 2025: general user availability
- From October 2025: production operation
- (End of 2025: Retirement of Noctua 1)

One HPC system!

Otus-Tier3 (HPCFachCluster.nrw)

More details https://hpc.dh.nrw/de/hpcfachcluster

Mid 2025: DFG Proposal submitted

- End of 2025: procurement process

- Mid of 2026: production operation

September 2025: general user availability

Otus-NHR

- Access: any compute time project
- Compute contingent:
 - small getting-started contingent
 - NHR projects can request to move quota from Noctua 1/2 to Otus
- From October 2025: production operation
 - Access: only NHR compute projects (NHR-starter, NHR-normal, NHR-large) due to funding (simply apply for an NHR project! Details later today)
 - Compute quota:
 - NHR projects can request to move quota from Noctua 1/2 to Otus
- After Extension (Otus-Tier3) 2026:
 - Access: NHR (starter, normal, large) and Tier3 (small)

Access

Summary of useable systems

	Tier-3 projects: (small)	NHR projects (starter, normal, large):
Noctua 1	Till end of 2025	Till end of 2025
Noctua 2	As usual	As usual
Otus	In Sept. 2025	From Sept. 2025
	From mid of 2026 (extension Otus-Tier3, HPCFachCluster.nrw)	

Why different Project Categories?

Different needs for HPC are served/finded by different tiers:

Tier-0: EuroHPC

- largest European systems
- EuroHPC Joint Undertaking (JU)

Tier-1: GCS

- JSC, HLRS, LRZ
- Hosting for EuroHPC-Systems

National Highperformance Computing Alliance

Tier-2: NHR

- 9 HPC centers in Germany (including PC2)
- Topically focused

Tier-3: local

- Single institute or local university
- DFG Forschungsgroßgeräte

Overview: Possible Project Categories

		RECHINEIN		
	Tier-3 (small)	NHR-Starter	NHR-Normal	NHR-Large
Resources per year	up to 4M CPU-core-h, up to 10k GPU-h or FPGA-h	up to 8M CPU-core-h, up to 10k GPU-h or FPGA-h	up to 30M CPU-core-h, up to 100k GPU-h or FPGA-h	> 30M CPU-core-h or > 100k GPU-h or FPGA-h
Location of PI	Paderborn or NRW (Tier-3 supplementary service)	Germany		
Project Duration	One year	One year	One year or multiyear	One year or multiyear
Proposal submission	Any time	Any time	Any time	4 fixed dates (first of Jan., Apr., Jul., Oct.)
Project start	a few days	a few days	preliminary start about one week full project starts 4-8 weeks	preliminary start about one week full project starts 3 months
Simplifications	Only short online form!	Only short online form!	1) Multiyear project 2) Scientifically reviewed project 3) well-known programs	1) Multiyear project 2) well-known programs

See also https://pc2.uni-paderborn.de/system-access If unsure, please contact us.

Possible Simplifications for NHR-Projects

1. Using well-known programs

- o List at https://pc2.uni-paderborn.de/go/well-known-programs
- -> No benchmark or scalability required

2. Already scientifically reviewed project (NHR-Normal)

- by German federal ministry (BMBF, BMWK, BMUV, BMEL,...), DFG, GCS, European Union (EU projects), Volkswagen Stiftung, another NHR center
- o e.g. TRR, CRC, ExIn, GRK, Emmy Noether,....
- Needed: Information about granted project (project id, GEPRIS-link,...) but NOT the review
- -> much shorter detailed description, shorter processing time
- 3. Multi-year proposals
- -> one proposal for multiple years of project runtime
- 4. Extensions of NHR-Normal/Large projects
- -> reduced detailed description

Access: Login and Partitions

In practice just like Noctua 1 and Noctua 2:

- SSH: fe.otus.pc2.uni-paderborn.de then ssh otus
- File systems:
 - HOME: same on all systems
 - PC2DATA (permanent, /pc2/groups/hpc-prf-.../): same on all systems
 - o **PC2PFS** (temporary, /scratch): parallel file system of Otus
- Job submission: Same SLURM configuration as in N1/N2

Nodes	Partition	Count		Note
Compute nodes	normal	636	2xAMD 9655, 192 cores, 768 GiB RAM	
Large-memory nodes	largemem	48	2xAMD 9655, 192 cores, 1536 GiB RAM	
GPU-Nodes	gpu	27	2xAMD 9655, 192 cores, 768 GiB RAM, 4xNVIDIA H100-94GB NVLINK	gres=gpu:h100:[count]
FPGA-Nodes	fpga	32	2xAMD 9655, 192 cores, 768 GiB RAM, Planned: FPGAs and NVIDIA A40	

Software

In practice just like Noctua 1 and Noctua 2:

- Full list available at https://pc2.uni-paderborn.de/go/software
- "find_module" to search
- In job script
 module reset
 module load ...
- Please let us know if you are missing
 - Software/versions/libraries
 - Usage examples, e.g. example job scripts

QuantumESPRESSO

🔞 By Robert Schade 📭 2 min 🛂 6 🤡 Add a reaction 🔹 Cloud editor

Description

Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials (both norm-conserving and ultrasoft).

More information

- Homepage: https://www.quantum-espresso.org

Available Versions of QuantumESPRESSO

Version	Module	Available on
7.4-foss-2024a	chem/QuantumESPRESSO/7.4-foss- 2024a	Otus
7.3.1-intel-2023a	chem/QuantumESPRESSO/7.3.1-intel- 2023a	Noctua 1, Noctua 2, Otus
7.3.1-foss-2024a	chem/QuantumESPRESSO/7.3.1-foss- 2024a	Otus
7.3.1-foss-2023a	chem/QuantumESPRESSO/7.3.1-foss-	Noctua 1, Noctua 2

Software

In case you need/want to compile yourself:

Please use

- For GCC/Gfortran/AOCC:
 - -march=znver5 (or at least -march=znver4), -march=native if compiling on Otus
- For Intel compiler:
 - -march=core-avx512 (but NOT -xHost)
- For nvcc/GPUs:
 - Compute capability 9.0: -arch=compute_90 -code=sm_90

BLAS/Lapack:

- Best performance: AOCL-BLAS
- In practise: use Flexiblas module (wrapper around different BLAS/Lapack implementations)

Support

Support for any questions/problems, e.g.:

- Accessing the HPC systems at PC2
- Submitting compute jobs to the workload manger
- Available software packages and development tools
- System architecture and specifications
- Data management and additional services

- ...

Scientific Support:

- Compute time proposals
- Porting and Optimizing your compute jobs
- Organization of development workflows for your scientific code
- Code porting, debugging, optimization,...
- Algorithm design, implementation, and benchmarking
- Performance modelling
- Workflow organization and research data management
- Organization of scientific events like conferences and workshops

....

Main contact:

pc2-support@uni-paderborn.de or via https://portal.pc2.uni-paderborn.de/support

Weekly online support/consultation hour, Thursdays 13:00-14:00, https://pc2.uni-paderborn.de/go/consultationhour

HPC courses/events/schools: https://pc2.uni-paderborn.de/go/training

Details on Nodes: CPU Nodes

Improvements to Noctua 2:

- More powerful CPU cores: Zen5 (AVX512) vs. Zen3 (AVX2)
 - o --> recompile your software!
- More cores per Node: 192 vs. 128
 - Adapt your job scripts!
- More memory available:

	Otus	Noctua 2
Normal	768 GiB	256 GiB
Largemem	1536 GiB 3 TB local NVME SSDs	1024 GiB
Hugemem	In planning	2048 TiB
		Core L1 L2 L3

© Paderborn University / Stefan Rohde

Core Complex Die (CCD)

Details on Nodes: CPU Nodes

Improvements to Noctua 2:

	Otus	Noctua 2	Increase
Memory Bandwidth	970 GB/s	360 GB/s	2.7x
Floating-point Performance per Node (FP64)	13.2 TFlop/s	3.95 TFlop/s	3.3x
Interconnect	200 Gbit/s	100 Gbit/s	2x
VASP CuC_VdW	95 s	237 s	2.5x
CP2K H2O_512	224 s	674 s	3.0x
Quantum Espresso GRIR443	410 s	1139 s	2.8x

Increase by more than 2x in all per-node metrics and benchmarks

-> your calculations should run **2-3 times as fast** with the same number of compute nodes (if not, there is likely an issue with compiler settings/libraries, please contact us)

NVIDIA GPU H100 (Otus) **A100 (Noctua 2)** GPUs per Node 4 4 GPU Arch Hopper Ampere **NVLINK** 900 GB/s 600 GB/s **PCle** Gen5 128 GB/s Gen4 64 GB/s Memory 94 GiB HBM2e 40 GiB HBM2 2.40 TB/s 1.56 TB/s Bandwidth 19.5 TFlop/s Flops FP64 (TC) 67 TFlop/s Up to 700 W Up to 400 W Power

#SBATCH --gres=gpu:h100:[count]

Details on Nodes: GPU Nodes

© Paderborn University / Stefan Rohde

GPU Node

Details on Nodes: FPGA Nodes

	FPGA Partition			
Number of Nodes	32			
Accelerator Cards	AMD V80	IBEX IPAC-1000		
	PCIe Gen5 x8	PCle Gen5 x16		
	Up to 32	Up to 32		

Currently in Pilot phase

See also https://doku.pc2.uni-paderborn.de/pages/607125508/Otus+FPGA+Pilot+Phase

Parallel File System

Noctua 1: ClusterStor with Lustre

- All-in-all smooth operation

Noctua 2: DDN Exascaler with Lustre

- Often problems with slow metadata operations (open/close/stat) due to design of Exascaler
- SSD and HDD storage tier management was challenging

Otus: IBM Spectrum Scale with GPFS

- More advanced storage tier management
- Parallel file system of Noctua 2 accessible on login nodes via /scratch-n2

Noteworthy Differences to Noctua 2

- **192 cores** per node instead of 128 cores
- **AVX512** instead of AVX2
- configured with **one NUMA-Domain per CPU** (instead of 4 for Noctua 2)
- More memory and memory bandwidth
- More powerful **GPUs**
- (hopefully) more stable parallel file system

Job Monitoring

Performance metrics of your compute jobs:

- Online: https://jobmon.pc2.uni-paderborn.de/
- Check for example:
 - Usage of CPU cores in job
 - Memory usage and memory bandwidth
 - o File IO
 - o GPU usage

We are happy to optimize your compute jobs or support you!

Example: LAMMPS Job on GPUs


```
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=48
#SBATCH -t 1:00:00
#SBATCH -p gpu
#SBATCH --gres=gpu:h100:4

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
export OMP_PLACES=cores
export OMP_PROC_BIND=True

module reset
module load chem/LAMMPS/27Jun2024-foss-2023b-kokkos-CUDA-12.5.0
srun lmp -k on g 1 -sf kk -pk kokkos neigh half comm device
    neigh/qeq full newton on -in in.reaxc.hns -nocite -log out.log
```

#!/bin/bash
#SBATCH -N 1

Job Monitoring

Example: Quantum Espresso Job on CPUs

No full utilization of allocated cpu cores (here due to too many threads: 48 threads per MPI-process)


```
#!/bin/bash
#SBATCH -N 1
#SBATCH --ntasks-per-node=4 #MPI-processes per node
#SBATCH --cpus-per-task=48 #OpenMP-threads per MPI-process
#SBATCH -t 1:00:00

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
export OMP_PLACES=cores
export OMP_PROC_BIND=True

module reset
module load chem/QuantumESPRESSO/7.4-foss-2024a
srun pw.x -input grir443.in 2> err > out
```

What is Otus?

Otus: The new HPC System at PC2 (Otus-NHR)

- 743 compute nodes, 108 NVIDIA H100-94GB GPUs
- 6 PB GPFS parallel file system
- Infiniband 200/400 Gbit/s interconnect
- Funded by the NHR Alliance (nhr-verein.de)

Nodes	Partition	Count	
Compute nodes	normal	636	2xAMD 9655, 192 cores, 768 GiB RAM
Large-memory nodes	largemem	48	2xAMD 9655, 192 cores, 1536 GiB RAM
GPU-Nodes	gpu	27	2xAMD 9655, 192 cores, 768 GiB RAM, 4xNVIDIA H100-94GB NVLINK
FPGA-Nodes	fpga	32	2xAMD 9655, 192 cores, 768 GiB RAM, Planned: FPGAs and NVIDIA A40
(Huge-memory nodes in planning)			(Planned >=3 TB RAM)

© Paderborn University / Stefan Rohde

More details http://pc2.uni-paderborn.de/go/otus

Why Three different Project Categories?

Different needs for HPC are served/finded by different tiers:

Tier-0: EuroHPC

- largest European systems
- EuroHPC Joint Undertaking (JU)

Tier-1: GCS

- JSC, HLRS, LRZ
- Hosting for EuroHPC-Systems

National Highperformance Computing Alliance

Tier-2: NHR

- 9 HPC centers in Germany (including PC2)
- Topically focused

Local Systems of Universites/Research Institutions

Tier-3: local

- Single institute or local university
- DFG Forschungsgroßgeräte

What is the NHR Alliance?

National High-Performance Computing Alliance

- NHR, Nationales HochleistungsRechnen
- funded by GWK and federal states, first funding phase 2021-2030
- NHR compute time regulations: <u>https://www.nhr-verein.de/en/computing-time</u>

Mission: strong research infrastructure for all researchers of universities im Germany with need for computing resources

- operating suitable and efficient HPC systems
- support and training for using of HPC resources
- scientific support and consulting in focus areas
- special support for young scientists
- advancing HPC and its use in research with collaborative research with users

Focus areas of PC2:

- Condensed matter physics, esp. solid-state physics and computational chemistry
- Efficient HPC with accelerators like GPUs and FPGAs

Important aspects to consider:

- Resource Needs
- Formal Eligibility
- Effort for Proposal

Resource Needs

CPU-Core-hours:

- 1 CPU-core-hour = allocating one CPU-core for one hour
- Usually in millions of CPU-core-hours
- o CPU-cores are allocated exclusively to a job, i.e., different jobs can't share a core
- memory usage is included, i.e., allocating all memory of a node in jobs but only one core will "cost" you the corehours of the whole node

GPU-hours or FPGA-hours:

- 1 GPU-hour = allocating one GPU for one hour
- Usually in thousands of GPU-hours
- o GPUs are allocated exclusively to a job, i.e., different jobs can't share a GPU

-> Needed is a resource need per year

Additional:

- File system usage (space and number of files)
- Required main memory, maximal job runtime,...

Possible Routes to Estimate the Required Resources:

1. Personell-based estimation

- "I have N project members that each need M compute nodes or GPUs most of the time"
- Fine as a rough rule of thumb
- Example: 3 people using 4 GPUs most of the time = ~100k GPU-hours per year

Possible Routes to Estimate the Required Resources:

- 1. Personell-based estimation
- 2. Looking up what you have used in the NHR-Starter so far and extrapolating:
 - On the cluster: pc2status
 (this shows only the usage on the current cluster)
 - HPC-Portal: https://portal.pc2.uni-paderborn.de/
 log in and go to Dashboard

Start: 01.04.2025		
End: 31.03.2026		
State: enabled		
Phases and granted resources:		
01.04.2025 - 31.03.2026:		
CPU-Core hours		4,000,000
NVIDIA A100 GPU hours	:	10,000
Current granted resources:		
CPU-Core hours		4,000,000
NVIDIA A100 GPU hours	:	10.000
Used Resources in active phase:		
CPU-Core hours	\$	3,680.66
NVIDIA A100 GPU hours		124.9

Possible Routes to Estimate the Required Resources:

- 1. Personell-based estimation
- 2. Looking up what you have used in the NHR-Starter so far and extrapolating
- 3. From the required calculations:
 - (Number of Calculations) x (Number of cores used for the calculation) x (typical runtime of one calculation)
 - 1000 calculations x 256 cores x 48 hours = 12.3 mio. CPU-core-hours
 - Most accurate but also not easy in practice
 - this kind of estimation is required for the NHR proposals

Recommended estimation:

- 1. First try personell-based estimation and look as past usage
- 2. If now large changes are planned and if the result is clear within a project category, go for it
- 3. If not, try to estimated planned calculations

If you could use help with the estimation, contact us via pc2-support@uni-paderborn.de, consultation hours,...

How precise does the estimate have to be?

- Requested/granted resources are no hard limit for usage but only determine the priority (details at https://doku.pc2.uni-paderborn.de/pages/1902070/Quality-of-Service+QoS+and+Job+Priorities)
- Changes afterwards are possible:
 - Tier-3 (small) project: resource changes up to the upper limit is possible by informal request to <u>pc2-support@uni-paderborn.de</u>
 - NHR-normal/large project: resources can be increased by 25% once by informal request to <u>pc2-support@uni-paderborn.de</u>

Formal Eligibility

- Principal investigator must have a Ph.D/Dr. and is member of a university (incl. HAWs/FHs)
- NHR projects: any university in Germany
- Tier-3 project (small):
 - Local: Paderborn University
 - University in NRW:
 - Till end of 2025 Tier-3 supplementary services: if the university has no or no sufficient resources/services
 - But from 2026: new structure of state-wide Tier-3 HPC systems
 - hpcBasisCluster.nrw: general state-wide Tier-3 HPC system in Cologne
 - hpcFachCluster.nrw: science-specific state-wide Tier-3 HPC systems in Aachen (Engineering, AI), Paderborn (Physics, Chemistry, AI) and not yet determined third site
 - Universities (incl. HAWs/FHs) must contribute to be allowed access, more infos at https://hpc.dh.nrw/de/hpcfachcluster

Effort for Proposal

- Rule of thumb: the more resources requested, the higher the effort for the proposal
- Two components:
 - Online form
 - Detailed description of the project
 - Using a template (latex and docx available)
 - Only needed for NHR-projects, for scientific review of the request
 - Simplifications possible:
 - For extensions of existing projects
 - For already reviewed projects (DFG/federal ministries/EU/Volkswagen Stiftung)
 - For projects using well-known programs
 - For multiyear-projects (one proposal for multiple years of resource usage)

Example

Resource Needs

- Personell-based estimation: 2 people using on average 8 nodes of Noctua 2 (~18 mio CPU-Core-h)
- Looking up what you have used in the NHR-Starter so far and extrapolating: ~16 mio. CPU-core-h used is last year
- -> probably NHR-Normal
- From the required calculations: 800 calculations x 512 cores x 48 hours = 19.6 mio. CPU-core-hours
- -> clearly NHR-Normal (up to 30 mio. CPU-core-hours)

Formal Eligibility

- PI is member of university (incl. HAWs/FHs) in Germany

Effort for Proposal

- Online form: 30 minutes
- Detailed description with simplifications: afternoon to a day

Why all these Procedures and Regulation?

Short answer: The institutions (DFG, MWK, GWK,...) that fund the systems and services demand it.

Longer answer: Compute resources cost money (investment, maintenance, power cost, storage system, ...)

Rough estimates:

(details depend on cooling, hardware types,...)

- 1 mio. CPU-core-hours ≈ 2000-5000 Euro
- 1 thousand GPU-hours ≈ 500-1000 Euro
- -> typical NHR-normal project:
- 20 mio. CPU-Core-hours+20k GPU-hours per year ≈ 50k-120k Euro worth

Overview: Possible Project Categories

	Tier-3 (small)	NHR-Normal	NHR-Large
Resources per year	up to 4M CPU-core-h and up to 10k GPU-h or FPGA-h	up to 30M CPU-core-h and up to 100k GPU-h or FPGA-h	> 30M CPU-core-h or > 100k GPU-h or FPGA-h
Location of PI	Paderborn or NRW (Tier-3 supplementary service)	Germany	Germany
Project Duration	One year	One year or multiyear	One year or multiyear
Proposal submission	anytime	anytime	4 fixed dates (first of Jan., Apr., Jul., Oct.)
Review	internal technical review Internal scientific review	internal technical review external scientific review	internal technical review external scientific review
Project start	a few days	preliminary start about one week full project starts 4-6 weeks	preliminary start about one week full project starts 3 months
Simplifications		1) Multiyear project 2) Scientifically reviewed project 3) well-known programs	1) Multiyear project 2) well-known programs

See also https://pc2.uni-paderborn.de/system-access

Possible Simplifications for NHR-Projects

1. Using well-known programs

- O List at https://pc2.uni-paderborn.de/go/well-known-programs
- -> No benchmarks or scalability required

See also https://pc2.uni-paderborn.de/go/simplifications

Possible Simplifications for NHR-Projects

1. Using well-known programs

- List at https://pc2.uni-paderborn.de/go/well-known-programs
- -> No benchmarks or scalability required

2. Already scientifically reviewed project (NHR-Normal)

- by German federal ministry (BMBF, BMWK, BMUV, BMEL,...), DFG, GCS, European Union (EU projects),
 Volkswagen Stiftung, another NHR center
- e.g. TRR, CRC, ExIn, GRK, Emmy Noether,....
- Needed: Information about granted project (project id, GEPRIS-link,...) but NOT the review
- No full external scientific review required, only check for suitability of resource request
- -> much shorter detailed description, shorter processing time

3. Multi-year proposals

-> one proposal for multiple years of project runtime

4. Extensions of NHR-Normal/Large projects

-> reduced detailed description

- 1. Select suitable project category and simplifications ✓
- 2. Detailed description (NHR-Normal/Large)
- 3. Online form
- 4. Sign proposal form and send
- 5. Project proposal review
- 6. (preliminary) Project start/extension

(step-by-step guides for the individual project types are availble at https://pc2.uni-paderborn.de/system-access)

Steps

1. Select suitable project category and simplifications ✓

- use templates (latex, docx, pdf) available at https://pc2.uni-paderborn.de/go/proposaltemplates
- Feel free to send us a draft if you are unsure
- Simplification shorten the description

- 1) Introduction (0.5-1 page)
- 2) Preliminary Work (0.5-1 page) -> only 0.5 page
- 3) Description of the Project (2-4 pages)
- 4) Numerical Methods and Algorithms (0.5-1 page)
- 5) Related Computational Work (0.5-1 page)
- 6) Personal and Previous HPC Experience (0.5 page)
- 7) Computational Methods and Programs
 - 7.1) program summary (table)
 - 7.2) parallel efficiency and scaling
 - 7.3) workflow
- 8) Justification of Requested Resources
 - 8.1) Estimation of Resources (table)
 - 8.2) Schedule for Resources Usage (table)
- 9) Special Resource and Support Requirements (optional)
- 10) References

Steps

- 1. Select suitable project category and simplifications
- 2. Detailed description (NHR-Normal/Large)
 - use templates (latex, docx, pdf) available at https://pc2.uni-paderborn.de/go/proposaltemplates
 - Feel free to send us a draft if you are unsure
 - Simplification shorten the description
 - Using codes from the well-known programs list (https://pc2.uni-paderborn.de/go/well-known-programs)
 - Already scientifically reviewed project
 (by German federal ministry (BMBF, BMWK, BMUV, BMEL,...),
 DFG, GCS, European Union (EU projects), Volkswagen Stiftung,
 another NHR center

- 1) Introduction (0.5-1 page) -> only 0.5 page
- 2) Preliminary Work (0.5-1 page) -> only 0.5 page
- 3) Description of the Project (2-4 pages)
- 4) Numerical Methods and Algorithms (0.5-1 page)
- 5) Related Computational Work (0.5-1 page)
- 6) Personal and Previous HPC Experience (0.5 page)
- 7) Computational Methods and Programs
 - 7.1) program summary (table)
 - 7.2) parallel efficiency and scaling
 - 7.3) workflow
- 8) Justification of Requested Resources
 - 8.1) Estimation of Resources (table)
 - 8.2) Schedule for Resources Usage (table)
- 9) Special Resource and Support Requirements (optional
- 10) References

- 1. Select suitable project category ✓
- 2. Detailed description (NHR-Normal/Large) √
- 3. Online Form
 - Crucial fields: runtime/multiyear, resource volume (CPU-Core-h, GPU-h/FPGA-h), upload of detailed description, project information for already reviewed projects
 - o **Important, but can be changed later easily:** cluster selection, distribution of compute resources to clusters, storage requirements
 - Purely informational fields: job characteristics (job duration, main memory demand, GPUs per job,...), details about applications used, ...

- 1. Select suitable project category and simplifications ✓
- 2. Detailed description (NHR-Normal/Large) √
- 3. Online form √
- 4. Sign proposal form and send
 - o after submission of the online form, you will get a pdf to sign (by hand or electronically)
 - o please send it to pc2-support@uni-paderborn.de

- 1. Select suitable project category and simplifications ✓
- 2. Detailed description (NHR-Normal/Large) √
- 3. Online form √
- 4. Sign proposal form and send √
- 5. Project proposal review
 - Formal and technical check of the proposal
 - Scientific review of the proposal (NHR normal: typically 2 reviewers, NHR Large: at least 2 reviewers, see http://pc2.uni-paderborn.de/go/reviewerguide-nhr)

(any time)

Timeline NHR Large:

Note: we also accept proposals submitted a few days after the official deadlines

How can you get Support?

- Contact us via pc2-support@uni-paderborn.de
- Ask us in our regular weekly online consultation hour see https://events.uni-paderborn.de/category/13/
- We are also happy to schedule individual meetings to support you (in-person, online or phone).

For compute time proposals we can, for example, help you with:

- Estimating needed resources
- Choosing suitable project track
- Benchmarking
- Questions for online form and detailed description
- ...