
OpenCL Design Flows for Intel and
Xilinx FPGAs

Common Optimization Strategies, Design Patterns and
Vendor-specific Differences

Tobias Kenter
Paderborn Center for Parallel Computing &

Department of Computer Science
Paderborn University, Germany

DATE, Monday Tutorials – 25 March 2019 – Florence, Italy

Part 1
Common Design Patterns

Key Differences

Introduction

• Our mission at PC²

• Objectives for applications and libraries

• How far can those coexist?

4

My Agenda

Promote and Establish FPGAs as accelerators in HPC

Achieve Throughput Close to Architectural Limits

Use OpenCL as Performance Portable FPGA Design Tool

• Research interests / background
– application acceleration
– architecture exploration
– compilation tools

§ tool user: OpenCL, Maxeler
§ compiler extensions: LLVM, Clang

• Experience with OpenCL FPGA tool chains since 2016
– FDTD stencil computations with Xilinx and Intel
– DG code with Intel
– matrix multiplication with Intel and Xilinx
– CNN, convolutions with Xilinx and Intel
– FFT with Intel
– image processing and generalization with Xilinx
– elliptic curve method with Xilinx
– external channel communication with Intel

5

My Background

• Currently more focus on Intel tools due to our hardware setup
• Xilinx SDAccel has an extensive GUI that I mostly ignore here

– makefile + command line flow to quickly switch targets

6

My Biases

• Overview FPGAs and Goals
• OpenCL Overview

• Example 1: Vector Scale
– compilation
– reports
– performance analysis

• Vector Scale Variations
– automatic unrolling

• Example 2: SAXPY
– blockwise design pattern

• Outer Loop Pipelining
• Streaming Kernels

7

Outline Part 1

Overview: FPGAs and Goals

• Field-programmable Gate Array
– Gates

§ fundamental building blocks are logic gates

§ in all current FPGAs: LUTs (Lookup Tables)
§ truth table stored in SRAM

– Array
§ many gates (LUTs) in a regular 2D structure

– Field-programmable
§ configuration can be changed “in the field”, many times
§ in practice: currently takes up to few 100 ms
§ faster alternatives possible

9

FPGAs

A B out
0 0 0
0 1 0
1 0 0
1 1 1

Configuration
memory:
2N bits

Typical input sizes N:
5-8

FPGA – Basic Structures

10

millions

thousands

thousands

configuration bits define functionality

no sequence of instructions

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
LUT FF

DSP

RAM

• configuration
– all FPGAs components are programmable (logic cell, DSP, IO-block functions, routing, …)
– configuration data (bitstream) is stored in SRAM cells
– bitstream loaded from non-volatile memory at boot time
– some devices can be re-configured at runtime

• application domains
– glue logic
– rapid prototyping, emulation
– embedded systems

§ configurable system-on-chip
§ ASIC replacement

– reconfigurable computing
§ computing without CPUs
§ combine processor-like programmability with ASIC-like performance
§ recent hot topic: CNNs with customized precision

11

FPGA – Configuration and Application Domains

Example: Intel Stratix 10 GX2800 FPGA

• > 900000 configurable logic blocks
– up to 4 Boolean functions of 8 inputs

• 5760 hardened arithmetic units (DSP)
– fixed point and IEEE 754 SP floating-point

• 11721 independent SRAM blocks
– width/depth/ports highly configurable

• integrated DDR4 memory controllers
• up to 96 serial transceivers, up to 28.3 Gbps
• typically about 300-600MHz
• power consumption 50-225W

12

FPGA Technology Today

100 TERRA-OPS

10 single-precision TFLOPS

20 TB/s internal SRAM bandwidth
(full duplex)

300 TB/s communication
bandwidth (full duplex)

up to 80 GFLOPS/W

• Hardware design is traditionally done by
modeling the system in a hardware
description language (e.g. VHDL or Verilog)

• An FPGA synthesis tool (compiler)
generates an netlist of basic logic elements,

• which is then translated (mapped) to
components available on the FPGA,

• which are placed on the chip,
• and the connecting signals are routed

through the interconnection network.
• The resulting configuration data (bitstream)

for programing the FPGA is created

13

Classical FPGA Development

HDL

Synthesize

Netlist

Map

Place

Route

Bitstream

HDL Synthesis

14

xor

Register

a
b

output

clk

reset

clear

D Q

process(clk, reset)

begin

if reset = ‘1‘ then
output <= ‘0‘;

elsif clk‘event AND clk = ‘1‘ then
output <= a XOR b;

end if;

end process;

HDL

Synthesize

Netlist

Map

Place

Route

Bitstream

Technology Mapping

15

xor

Register

a
b

output

clk

reset

clear

D Q

a
b

output
FF

HDL

Synthesize

Netlist

Map

Place

Route

Bitstream

Place & Route

16

HDL

Synthesize

Netlist

Map

Place

Route

Bitstream

c = a ^ b ;

17

Modern FPGA Development

HDL

Synthesize

Netlist

Map
Place
Route

Bitstream

OpenCL

High-level-Synthesis

for (int i = 0; i < SIZE; i++){
c[i] = a[i] * b[i];

}

Execution on CPU
• Series of instructions

Execution on FPGA
• Spatial data path + control

18

Execution on CPU vs on FPGA

for (int i = 0; i < SIZE; i++){
c[i] = a[i] * b[i];

}

loop:
ld %a $a(%i)
ld %b $b(%i)
%c = %a * %b
st $c(%i) %c
%i = %i + 1
branch i<SIZE: loop

st $c(%i)

%a * %b

ld $b(%i)ld $a(%i)

%i = %i+1

i<SIZE

• Use functional units every cycle
• Initiation intervall II

– describes pipeline fill rate

19

Pipelining

t

loop iteration / work item

st $c(%i)

%a * %b

ld $b(%i)ld $a(%i)

%i = %i+1

i<SIZE

II=1

20

High Level Design Goals

use (expensive) arithmetic units (almost) every cycle ü

have scaling designs up to resource or bandwidth limits

• This loop may use
– 2 memory blocks for inputs
– 1 DSP for multiplication
– 1 memory block for output
– 280 logic cells for counter and control

• Could create 3907 instances of this block
– critical resource: 11721 memory blocks / 3

• or 3906 different blocks of this size
• or …

st $c(%i)

%a * %b

ld $b(%i)ld $a(%i)

%i = %i+1

i<SIZE

OpenCL Overview

• Host API and kernel language

• OpenCL platform model

• FPGA platforms
– OpenCL 1.0 standard + selected features

https://www.khronos.org/registry/OpenCL/
22

OpenCL Standard and Platform Model

C/C++
Host API

OpenCL C

compile/
synthesize

compile,
link

Host Accelerator

Accelerator

MemMem

Mem

• Detect a platform (= runtime library, driver here)
• Detect devices
• Allocate devices (= create context)

• Create and build program (on FPGA platforms = load and configure bitstreams)
• Create kernel objects
• Create command queues

• Allocate device memory
• Transfer data
• Setup kernel arguments
• Call kernels
• Synchronize

23

Host Code

• Specify accelerator functionality in C syntax

• Special language features
– function qualifier (__kernel)
– vector data types and operations
– address space qualifiers

• NDRangeKernel concept
– express data parallel execution of work items and work groups
– get_global_id
– get_local_id
– supported in FPGA platforms, but often not the most efficient method

24

Kernel Code

• Intel FPGA SDK for OpenCL 18.1.1
• https://www.intel.com/content/www/us/en/programmable/products/design-

software/embedded-software-developers/opencl/support.html
– Release Notes
– Getting Started Guide
– Programming Guide
– Best Practices Guide
– …
– Download the version specific PDFs!

• Target board: Bittware 520N
• Target FPGA: Intel Stratix 10 GX 2800

– 933120 ALMs
– 11721 M20k memory blocks (20kb each)
– 5760 DSP blocks, 1x 32 bit IEEE 754 SP floating-point or 2x 18x19 multipiers

25

Used Intel OpenCL Platform

https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html

• Xilinx SDx 2018.3 SDAccel
• https://www.xilinx.com/html_docs/xilinx2018_3/sdaccel_doc/index.html
• https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html#documentation

– Release Notes, Installation, and Licensing Guide
– Environment User Guide
– SDAccel Environment Programmers Guide
– SDAccel Environment Profiling and Optimization Guide
– SDx Pragma Reference Guide
– …
– Download the version specific PDFs!

• Target board: Alpha Data ADM-PCIE-8k5
• Target FPGA: Xilinx Kintex Ultrascale KU115-2

– 663360 CLB LUTs
– 2160 BRAM blocks, 36kb each
– 5520 DSP slices, 27x18 multipliers

26

Used Xilinx OpenCL Platform

https://www.xilinx.com/html_docs/xilinx2018_3/sdaccel_doc/index.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

• SDx combines GUI tool and command line compiler for
– SoCs (Zynq) and discrete target platforms (PCIe)

§ SoCs
– enables shared memory and CPU-FPGA interactions beyond OpenCL platform model
– uses SDSoC license

§ discrete platforms
– use BSP following OpenCL platform model
– use SDAccel license

– OpenCL and C/C++ kernel specification
§ OpenCL

– attributes can be used to guide high-level synthesis step
§ C/C++

– HLS pragmas are used to guide high-level synthesis step (more available)
– fixed kernel interface for discrete target platforms

• Scope in this talk: discrete target platforms with OpenCL

27

Note on Xilinx Tool Scope

• Overview FPGAs and Goals
• OpenCL Overview

• Example 1: Vector Scale
– compilation
– reports
– performance analysis

• Vector Scale Variations
– automatic unrolling

• Example 2: SAXPY
– blockwise design pattern

• Outer Loop Pipelining
• Streaming Kernels

28

Outline Part 1

Example 1: vector scale

• Examples and essential reports of both tools available at
https://github.com/kenter/OpenCL-FPGA-examples

30

Vector Scale Single-Work Item Kernel

__kernel
void vscale(
__global float16 *restrict x,
__global float16 *restrict y,
const float a,
const int size16)
{

vscale:
for(int i=0; i<size16; i++){

y[i] = x[i]*a;
}

}

https://github.com/kenter/OpenCL-FPGA-examples

31

Pipelining: Expectation

t

loop iteration

__kernel
void vscale(
__global float8 *restrict x,
__global float8 *restrict y,
const float a,
const int size8)
{

vscale:
for(int i=0; i<size8; i++){

y[i] = x[i]*a;
}

}

• aoc -rtl -report -v -board=p520_max_sg280l -fp-relaxed -fpc
device/vscale1_vec.cl

32

Compiling with Intel FPGA SDK for OpenCL

t

loop iteration?

• reports/report.html
• Summary

– 1 Single work-item kernel
– high resource includes BSP

33

Intel Report (1) Summary

• Loop analysis

34

Intel Report (2) Loop Analysis

t

loop iteration
II=1

II=3 in case of memory stall?

• System viewer
– selecting the loop denoted as vsacle.B2

35

Intel Report (3) System viewer

• Tooltip or details pane reveals more details on individual nodes

36

Pipeline Following System Viewer

t

loop iteration

• deep pipeline with II = 1 and latency = 656
– stallable by memory interface

• important: wide, burst-coalesced loads / stores

• 16 DSPs for 16 float multiplications
37

Intel Report (4) Area Analysis

• Initiation Intervall II = 1
• Latency L = 656
• Iterations N
• Time in Cycles C = N x II + L

38

Design Review (1)

use (expensive) arithmetic units (almost) every cycle

have scaling designs up to resource or bandwidth limits

N C Efficiency

10 666 1.5%

100 756 13.2%

1000 1656 60.4%

10000 10656 93.8%

100000 100656 99.3%

• Read and write 16 floats (32 bit) per cycle
– 2 x 512 bit = 2 x 64 byte per cycle

• Peak bandwidth of board
– 4 x (64+8) bit x 2400 MHz (physical interface)
– 4 x 512 bit x 300 MHz (OpenCL interface)
– can unroll 2x more or have 2 compute units

• Kernel can run at > 300 MHz (350-400 MHz for this type of simple kernel)
– 2x unrolled version mildly bandwidth limited

• Main problem: low arithmetic intensity
– only 16 of 5760 DSPs used – 0.28% utilization – 0.55% with another 2x unrolling

39

Design Review (2)

use (expensive) arithmetic units (almost) every cycle ü

have scaling designs up to resource or bandwidth limits

• xocc -g -R 2 -s --platform=alpha-data_adm-pcie-8k5_dynamic_5_0
--memory_port_data_width all:512 -c device/vscale1_vec.cl -o
vscale1_vec.xo

40

Compiling with Xilinx SDx (SDAccel)

• Vivado HLS log

• Similar 512 bit burst loads / stores

• II = 1
• Depth = 10 vs. Latency = 656 in Intel Design

– different terminology, different treatment of off-chip memory latency
– latency is still there (will see in next example) – estimate of loop efficiency harder

41

Xilinx Report (1) Vivado HLS Log

• System estimate

• 3 DSPs (+ some logic) per MUL
– need to combine 27x18 multipliers
– Vivado HLS provides some control over balance between DSPs and logic
– SDx with OpenCL inputs not directly
– short multiplications can be done with single DSP

42

Xilinx Report (2) System Estimate

• 2 very similar designs
• Found pipelining in reports
• Found 512 bit wide burst-coalesced loads / stores in reports
• Found 16 parallel floating point MULs indirectly in resource estimate

• It’s much easier to reach bandwidth limits than compute resource limits

43

Vector Scale Summary

use (expensive) arithmetic units (almost) every cycle ü

have scaling designs up to resource or bandwidth limits ü

Vector Scale Variations

• https://github.com/kenter/OpenCL-FPGA-examples -> vscale2_u.cl
– report files in reportIntel and reportXilinx
– What has changed in contrast to vscale1_vec (throughput, resources, …)?

45

Vector Scale with Unrolling

__kernel
void vscale(
__global float *restrict x,
__global float *restrict y,
const float a,
const int size)
{

__attribute__((opencl_unroll_hint(16)))
for(int i=0; i<size; i++){

y[i] = x[i]*a;
}

}

More typical alternative for
Intel compiler

#pragma unroll 16

https://github.com/kenter/OpenCL-FPGA-examples

• Same functionality, increased resources, predication for loop epilogue
46

Intel Report: Area Analysis
old

new

• Unroll hint ignored
– Xilinx compiler doesn’t generate automatic epilogues
– no explicit message
– area report reveals it

- and pipelining result?

- memory interface width doesn’t fit

47

Xilinx Report

was 10 before!

• When code pattern doesn’t fit
Ø Attributes and pragmas ignored by compilers

• When code pattern fits
Ø Attributes and pragmas often not needed
- __attribute__((xcl_pipeline_loop(1)))
- #pragma ii <desired_initiation_interval>

• Xilinx compiler doesn’t generate automatic epilogues

48

Lessons

49

Vector Scale with simpler Unrolling
__kernel
void vscale(
__global float *restrict x,
__global float *restrict y,
const float a,
const int size)
{

// attention, functionality only
// identical if size is multiple of 16
const int size16 = size / 16;
__attribute__((opencl_unroll_hint(16)))
for(int i=0; i<size16*16; i++){

y[i] = x[i]*a;
}

}

50

Unrolled Vector Scale with Epilogue

__kernel
void vscale(
__global float *restrict x,
__global float *restrict y,
const float a,
const int size)
{

const int size16 = size / 16;
__attribute__((opencl_unroll_hint(16)))
for(int i=0; i<size16*16; i++){

y[i] = x[i]*a;
}
const int rest = size - size16;
for(int i=size16*16; i<size16*16+rest; i++){

y[i] = x[i]*a;
}

}

Notes:
- logic resource overhead
- simplify iteration expressions
- try predication
- tradeoff between portability

and performance!

• Overview FPGAs and Goals
• OpenCL Overview

• Example 1: Vector Scale
– compilation
– reports
– performance analysis

• Vector Scale Variations
– automatic unrolling

• Example 2: SAXPY
– blockwise design pattern

• Outer Loop Pipelining
• Streaming Kernels

51

Outline Part 1

Example 2: SAXPY

• Level 1 BLAS routine (single precision a times x plus y)

• https://github.com/kenter/OpenCL-FPGA-examples -> SAXPY1.cl
– report files in reportIntel and reportXilinx
– How does pipelining work out here?

53

SAXPY

__kernel
void SAXPY(
__global const float *restrict x,
__global float *restrict y,
const int a,
const int size)
{

for (int i=0; i<size; i++)
y[i] = a*x[i] + y[i];

}

Differences to previous example
• Uses y as input and output
• 2 loads + 1 store

https://github.com/kenter/OpenCL-FPGA-examples

• Xilinx compiler generates at most 2 concurrent bursts
• More global memory access will compete for ‘gmem’ port of memory controller

54

Xilinx Report

• Data without address space qualifier goes to __local memory (on chip BRAM)

55

Design Pattern: Blockwise Read-Modify-Write

#define BLOCK_SIZE 1024
__kernel
void SAXPY(
__global float *restrict x,
__global float *restrict y,
const int a,const int size)
{

for (int i=0; i<size;
i+=BLOCK_SIZE)

{
...

}
}

{
float local_x[BLOCK_SIZE];
float local_y[BLOCK_SIZE];
__attribute__((opencl_unroll_hint(16)))
for(int j=0; j<BLOCK_SIZE; j++){

local_x[j] = x[i+j];
}
__attribute__((opencl_unroll_hint(16)))
for(int j=0; j<BLOCK_SIZE; j++){

local_y[j] = y[i+j];
}
__attribute__((opencl_unroll_hint(16)))
for (int j=0; j<BLOCK_SIZE; j++){

y[j] = a*local_x[j] + local_y[j];
}

}

• Xilinx Pipelining

• 3 pipelined loops inside sequential outer loop
• Per outer loop iteration

– Time in Cycles C =
§ N x II(Loop 1.1) + L(Loop 1.1) +
§ N x II(Loop 1.2) + L(Loop 1.2) +
§ N x II(Loop 1.3) + L(Loop 1.3)

= 1024 + 3 + 1024 + 3 + 1024 + 21
– Asymptotically N x 3

• Still much better than II 151 and no bursts

56

Xilinx Reports and Performance Model

t

loop iteration

• No fixed ‘ports’ on global memory
• Can sustain multiple burst transfers concurrently

– see later case study on efficiency
• Original SAXYP implementation efficiently pipelined

57

Intel SAXPY: the Good…

• In this example: blockwise design for portability
• General reasons for blockwise designs

– data reuse within block
– reordering / indirect / irregular data access

58

Intel SAXPY Blockwise: the (not so) Bad…

• Technically the outer loop is pipelined, check aocl-best-practices-guide for details

59

Intel Serial Execution (1)

• Technically the outer loop is pipelined, check aocl-best-practices-guide for details

60

Intel Serial Execution (2)

• 3 pipelined loops inside serial execution outer loop
• Per outer loop iteration

– Time in Cycles C =
§ N x II(Loop 1.1) + L(Loop 1.1) +
§ N x II(Loop 1.2) + L(Loop 1.2) +
§ N x II(Loop 1.3) + L(Loop 1.3)

= 1024 + 244 + 1024 + 244 + 1024 + 79
– Asymptotically N x 3

• Asymptotically same throughput as Xilinx design

61

Intel SAXPY Blockwise: the (not so) Bad… Performance

t

loop iteration

• Additional memory resources are allocated for outer loop pipelining

• minor overhead in this case
• can be modified

– #pragma max_concurrency 1

62

Intel SAXPY Blockwise: the (slightly) Ugly

• Xilinx designs suffer from competition on ‘gmem’ ports
– next slide: brief look at Intel LSUs

• Blockwise designs can involve overheads like 3 x
– will introduce streaming kernels as broadly applicable pattern to overcome this
– sometimes the solution is simpler

• Intel compiler replicates local memories for outer loop pipelining
– will look at example without ‘serial execution’

63

Lessons from SAXPY

• LSU: Load Store Unit
– initiate burst transfer to local buffer
– feed kernel with data from local buffer

• Linear buffer or cache
– automatic decision, mostly works well

64

Intel LSUs

t

x

y

LSU - DDR memory

t

x

y

kernel - LSU

• Xilinx designs suffer from competition on ‘gmem’ ports
– next slide: brief look at Intel LSUs ü

• Blockwise designs can involve overheads like 3 x
– will introduce streaming kernels as broadly applicable pattern to overcome this
– sometimes the solution is simpler

• Intel compiler replicates local memories for outer loop pipelining
– will look at example without ‘serial execution’

65

Lessons from SAXPY

Outer Loop Pipelining

• Review reason for serial execution

67

Resolving Serial Execution (1)

• Tell compiler that blocks are independent
– #pragma ivdep

68

Resolving Serial Execution (2)

69

Execution flow with Outer Loop Pipelining

t

loop iteration

before

t

inner iteration
outer iteration

inner iteration

inner iteration

• Asymptotically all functional units filled in every cycle
• Pipeline takes long to fill

– recap from earlier example

– now similar efficiency considerations apply to inner and outer loops
– e.g. N inner = N outer = 1000

§ efficiency = 0.604 * 0.604 = 0.365 -> 36.5%
– in practice, latency of outer loop is much higher!

70

Outer Loop Pipelining Performance

N C Efficiency

10 666 1.5%

100 756 13.2%

1000 1656 60.4%

10000 10656 93.8%

100000 100656 99.3%

• Very powerful tool
– this example: constant and identical trip counts of inner loops
– successfully tested: different trip counts of inner loops based on runtime arguments
– works also for deeper nesting levels

• Memory replication can be very costly
– resource balance: ~2 block RAMs for 1 DSP
– replication can easily lead to 3-5 x more block RAM usage

71

Intel Outer Loop Pipelining Summary

• Can request pipelining in one outer loop (or function)
• __attribute__((xcl_dataflow))
• Generally: less flexible than Intel counterpart
• In this example: doesn’t overcome ‘gmem’ conflict

72

Xilinx Counterpart

Streaming Kernels

• Scaling option: add more different tasks
• Advantage: may lead to better balanced resource mix

• Key goals
– execute tasks concurrently
– forward reused data on chip from one task to the next
– FPGA architecture: wires, FIFO buffers

• OpenCL 2.0 feature: pipe

74

Task-level Parallelism

use (expensive) arithmetic units (almost) every cycle

have scaling designs up to resource or bandwidth limits

• OpenCL 2.0 pipe
– dynamic allocation from host code
– CPUs and GPUs don’t have kernel-to-kernel wires, use shared memory
– default: non blocking (polling)

• Intel FPGA adaptation
– introduce name channel
– #pragma OPENCL EXTENSION cl_intel_channels : enable
– require static instantiation in .cl file
– allow __attribute__((depth(N)))
– default: blocking
– less efficient, more standard conform pipes available

• Xilinx adaptation
– require static instantiation in .cl file
– require __attribute__((xcl_reqd_pipe_depth(N))) N in [16,32,64,…32768]
– add blocking mode (and recommend using it)

75

OpenCL FPGA Tool Adaptions of Pipes

• Use blocking semantics by default

76

Header File for Portable FPGA Pipes

77

Pipes in SAXPY Streaming Kernel

#include "macros.h"

PIPE float p_y
__attribute__((xcl_reqd_pipe_depth
(32)));

__kernel
void readY(
__global float16 *restrict y,
const int size16
)
{

for (int i=0; i<size16; i++){
float16 y_in = y[i];
PIPE_WRITE(p_y, y_in);

}
}

__kernel
void SAXPY(
__global const float16 *restrict x,
__global float16 *restrict y,
const int a,
const int size16
)
{

for (int i=0; i<size16; i++){
float16 y_in;
PIPE_READ(p_y, y_in);
y[i] = a*x[i] + y_in;

}
}

• Xilinx (and Intel) design with 2 overlapping kernels with II = 1 loops

78

SAXPY Streaming Result

• Pipes for task-level parallelism
• Decoupling with pipes can also resolve other pipelining obstacles or kernel stalls

– here: global memory interface restrictions for Xilinx
• Note on resources

– visible resource utilization low
– but pipes need wires – can prohibit successful routing

§ rule of thumb 512 bit pipes (like memory interface) are fine
§ much wider pipes cause problems

• Note on host code
– OpenCL command queues are sequential by default
– use multiple command queues for concurrent kernel execution
– Xilinx only alternative: out-of-order command queue

79

Streaming Kernel Summary

Conclusion Part 1

• Overview FPGAs and Goals
• OpenCL Overview

• Example 1: Vector Scale
– compilation
– reports
– performance analysis

• Vector Scale Variations
– automatic unrolling

• Example 2: SAXPY
– blockwise design pattern

• Outer Loop Pipelining
• Streaming Kernels

81

Outline Part 1

• Covered concepts
– Pipelining
– Unrolling / Vectorization
– Local Memory
– Blockwise operations
– Outer loop pipelining
– Streaming

• Other important concepts
– Local memory layout
– Loop coalescing
– Reductions
– Shift Registers
– Latency hiding

82

Concept Summary

• Intel and Xilinx OpenCL compilers have mostly improved over the last 3+ years
– Intel removed support for variadic macros

• New FPGA architectures always pose challenges
– Xilinx introduction of super logic regions (SLRs) – seems well resolved now
– Xilinx introduction of UltraRAM – unknown status to me
– Intel Stratix 10 HyperFlex

§ higher clock frequencies partially realized already
§ tools have introduced much higher latencies
§ blocking channels discouraged

– next challenge for both: high bandwidth memory (HMB)
§ 32 x 512 bit memory interfaces?

83

General Remarks

Part 2
Vendor Matrix Multiplications

Complex Design Examples

Simple, yet Efficient Matrix
Multiplication Designs with

OpenCL

Intel FPGA
• https://www.intel.com/content/www/us/en/programmable/products/design-

software/embedded-software-developers/opencl/support.html#design-examples
– examples driven by application scenario, pargmatic combination of concepts
– each example optimized for peak performance on one target device

Xilinx
• https://github.com/Xilinx/SDAccel_Examples

– focus on presenting one or few concepts in working example
– most examples (getting started group) not optimized to fully utilize device

4

Vendor Example Resources

https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html
https://github.com/Xilinx/SDAccel_Examples

• C = A x B

• Overall data used: 3 x N^2
• Computations (MAC) per element: N
• Overall computations: N^3
• Peak arithmetic intensity: N

5

Matrix Multiplication

= x

Intel FPGA
• https://www.intel.com/content/www/us/en/programmable/support/support-

resources/design-examples/design-software/opencl/matrix-multiplication.html
• Matrix Multiplication with ND range kernel

– 64x64 tiles, up to 16x64 MAC operations per cycle
Xilinx
• https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/kernel_o

pt/systolic_array_ocl
• Matrix Multiplication with systolic array

– integer operations
Tutorial copies
• https://github.com/kenter/OpenCL-FPGA-examples

– matrix_mult.cl
– mmult.cl

6

Tutorial Examples for Matrix Multiplication

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/matrix-multiplication.html
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/kernel_opt/systolic_array_ocl
https://github.com/kenter/OpenCL-FPGA-examples

Intel FPGA matrix_mul

• NDRange kernel

• Read code inside kernel from perspective of one work item
• IDs are used to determine element positions

8

Intel matrix_mult.cl

• Work item computes result element
• Work group computes result tile

• Process inputs per tile

• https://github.com/kenter/OpenCL-FPGA-examples -> matrix_mult.cl
– additional reports in reportIntel
– Throughput of this design?

9

Tiling in Work Groups and Items

= x

https://github.com/kenter/OpenCL-FPGA-examples

• Input Tiles

• Where’s the output tile?

• Only output value work item
• Input tiles are shared in group (__local)
• Output elements are work-item private (still __local memory space)

10

Allocation of Local Memory

• Loop over input tiles

• Note: need to synchronize between work items after loading tiles

• Loop over tile vectors

• Fully unrolled: 64 MACs per cycle
11

Two loops

• NDRange kernel feature SIMD Work Items (max 16)

• Process multiple work items per cycle
• Need more elements of B concurrently

12

SIMD Work Items

• Local buffer size increased by 16 banks

13

Resource Usage of Banking

• 64 (unrolled inner loop) x 16 (SIMD work items) MAC operations per cycle
• Balanced resource usage (good fit for Arria 10 GX1150)

– ~1024 DSPs, ~1350 BRAMs (832 for local B tile)

• Performance considerations, per pair of input tiles
– calculate 64x64 work items, 16 in parallel -> 64x64/16 = 64x4 = 256 cycles per pair of input tiles
– need to load 2 tiles à 64x64 floats (eventually store 1 tile à 64x64 floats)

§ 2 x 64x64 x 32 bit = 2 x 128kb per tile
§ have 256 cycles: 2 x 512 bit per cycle – perfect match for memory interface

• Scaling considerations (Stratix 10)
– higher compute to bandwidth ratio needs larger tiles
– scaling problems for banked B tiles and registers for work item state

(running_sum and more)
14

Intel MM Design Evaluation

• Covered concepts
– Pipelining (different here: NDRange)
– Unrolling / Vectorization
– Local Memory
– Blockwise operations
– Outer loop pipelining (different here: work groups)
– Streaming

• Other important concepts
– Local memory layout
– Loop coalescing
– Reductions
– Shift Registers
– Latency hiding

15

Concepts Used

Xilinx mmult

• Educational example on technique systolic array
• https://github.com/kenter/OpenCL-FPGA-examples -> mmult.cl

– additional reports in reportXilinx
– How many pipelined loops?

• Blockwise processing
– 2 read blocks, 1 compute block, 1 write back block

17

Xilinx mmult.cl

https://github.com/kenter/OpenCL-FPGA-examples

• Array partitioning for parallel access
– in first dimension
– in second dimension
– in all dimensions

18

Xilinx mmult.cl Snippets (1)

• Outer loop pipelined

• what about the two loops inside?
– again, code pattern determines further transformations

19

Xilinx mmult.cl Snippets (2)

• 2D loop unrolling
– simple form of systolic array

20

Xilinx mmult.cl Snippets (3)

• code inside loop
– PEs get data directly from input array

21

Xilinx mmult.cl Snippets (4)

accumulation in 1 cycle required

• Given example with 12 x 12 = 144 parallel operations

• Single cycle accumulation not possible for floating point

• Need to accumulate into several registers (~latency) and later sum up
22

Xilinx mmult.cl Results + Limitations

• Covered concepts
– Pipelining
– Unrolling / Vectorization (different here: systolic array, unrolling in 2 dimensions)
– Local Memory
– Blockwise operations
– Outer loop pipelining
– Streaming

• Other important concepts
– Local memory layout
– Loop coalescing
– Reductions
– Shift Registers
– Latency hiding

23

Concepts Used

Success Stories
Complex Design Examples

• FDTD stencil solver for Maxwell
equations
– regular 2D grid
– acceleration with FPGAs
– generalization of OpenCL design for Xilinx

and Intel FPGA compilers

• Kenter et. al: Flexible FPGA design for FDTD using
OpenCL. Proc. Int. Conf. on Field Programmable Logic
and Applications (FPL). Sep. 2017.

25

Electrical Engineering: Nanophotonics Simulations

• Discontinuous Galerkin solver for
Maxwell equations
– regular opeartions on unstructured grids
– acceleration mit FPGAs
– generalization in domain specific

language (DSL) and compiler

• Kenter et. al: OpenCL-based FPGA design to accelerate
the nodal Discontinuous Galerkin method for unstructured
meshes. Proc. Int. Symp. on Field-Programmable Custom
Computing Machines (FCCM). Apr. 2018.

26

Electrical Engineering: Nanophotonics Simulations (2)

27

Thank you!
Questions?

