OpenCL Design Flows for Intel and
Xilinx FPGAs

Common Optimization Strategies, Design Patterns and
Vendor-specific Differences

Tobias Kenter
Paderborn Center for Parallel Computing &
Department of Computer Science

Paderborn University, Germany

Paderborn
Center for
Parallel
Computing

DATE, Monday Tutorials — 25 March 2019 — Florence, Italy

Part 1
Common Design Patterns
Key Differences

Introduction

My Agenda

e Qur mission at PC2

Paderborn
Center for
Parallel
Computing

Promote and Establish FPGAs as accelerators in HPC

e Objectives for applications and libraries

Achieve Throughput Close to Architectural Limits

Use OpenCL as Performance Portable FPGA Design Tool

e How far can those coexist?

My Background

e Research interests / background
— application acceleration
— architecture exploration
— compilation tools
= tool user: OpenCL, Maxeler
= compiler extensions: LLVM, Clang
e Experience with OpenCL FPGA tool chains since 2016
— FDTD stencil computations with Xilinx and Intel
— DG code with Intel
- matrix multiplication with Intel and Xilinx
— CNN, convolutions with Xilinx and Intel
— FFT with Intel
— image processing and generalization with Xilinx
— elliptic curve method with Xilinx
- external channel communication with Intel

My Biases

e Currently more focus on Intel tools due to our hardware setup

e Xilinx SDAccel has an extensive GUI that | mostly ignore here
- makefile + command line flow to quickly switch targets

Overview FPGAs and Goals
OpenCL Overview

Example 1: Vector Scale
— compilation

- reports

— performance analysis

Vector Scale Variations
— automatic unrolling

Example 2: SAXPY

— blockwise design pattern
Outer Loop Pipelining
Streaming Kernels

Outline Part 1

Overview: FPGAs and Goals

FPGAs

e Field-programmable Gate Array
- Gates

» fundamental building blocks are logic gates

Em Configuration

0 0§0 memory:
2N bits
0
/ Typical input sizes N:

5-8
= in all current FPGAs: LUTs (Lookup Tables)

= truth table stored in SRAM
- Array

= many gates (LUTSs) in a regular 2D structure
— Field-programmable

= configuration can be changed “in the field”, many times
= in practice: currently takes up to few 100 ms
» faster alternatives possible

FPGA - Basic Structures

J‘:LD— millions

thousands

thousands

configuration bits define functionality
no sequence of instructions
programmable switch
<7 input/output | high-speed matrix
—» block [**|Pad 1 serial |« pad \ /
| transceivers

10

FPGA - Configuration and Application Domains

configuration
- all FPGAs components are programmable (logic cell, DSP, 10-block functions, routing, ...)
— configuration data (bitstream) is stored in SRAM cells
- bitstream loaded from non-volatile memory at boot time
— some devices can be re-configured at runtime

application domains

- glue logic

- rapid prototyping, emulation
- embedded systems

= configurable system-on-chip
= ASIC replacement
- reconfigurable computing
= computing without CPUs
= combine processor-like programmability with ASIC-like performance
= recent hot topic: CNNs with customized precision

11

FPGA Technology Today

Example: Intel Stratix 10 GX2800 FPGA

e > 900000 configurable logic blocks

— up to 4 Boolean functions of 8 inputs

100 TERRA-OPS

e 5760 hardened arithmetic units (DSP) 10 single-precision TFLOPS
— fixed point and IEEE 754 SP floating-point
e 11721 independent SRAM blocks 20 TB/s internal SRAM bandwidth
(full duplex)

— width/depth/ports highly configurable
¢ integrated DDR4 memory controllers

e up to 96 serial transceivers, up to 28.3 Gbps
¢ typically about 300-600MHz

e power consumption 50-225W up to 80 GFLOPS/W

300 TB/s communication
bandwidth (full duplex)

12

HDL

l

Synthesize
v

Netlist

v

Map
v

Place
v

Route
v

Bitstream

Classical FPGA Development

Hardware design is traditionally done by
modeling the system in a hardware
description language (e.g. VHDL or Verilog)

An FPGA synthesis tool (compiler)
generates an netlist of basic logic elements,

which is then translated (mapped) to
components available on the FPGA,

which are placed on the chip,

and the connecting signals are routed
through the interconnection network.

The resulting configuration data (bitstream)
for programing the FPGA is created

13

HDL

l

Synthesize

v

Netlist

v

Map
v

Place
v

Route
v

Bitstream

HDL Synthesis

process(clk, reset)

begin

if res

et = ‘1°

then

output <= ‘0°;
elsif clk‘event AND clk = ‘1‘ then
output <= a XOR b;

end if

$-

———» output

Register
E I xor —D Q
clk —>
clear
reset f

14

HDL

l

Synthesize
v

Netlist

v

Map
v

Place
v

Route
v

Bitstream

o 9o

xor——» D

clk —>

reset

Technology Mapping

Register

Q

clear

- » output

$-

FF

output

15

Place & Route

|0 0D 0 O
|0 O O 0 O
HDL |00 D 0 O
|0 0O OO
| 00D 00
I 0CO0 0O |
: 0o 0 0 O 1 1| i 1| I
Synthesize |0 0O 0 O I T e
v |0 OO0 0 [III]" 1 1| ;|| f"]l 1| 1| ,]! _{g A
I 000 O N B =y
: 0o 0 0 Jaaae
Netlist |0 GO0 f‘;ll 37 l!l_ FE 1|. [(= ~_1|
| jooo e o O =
|0 OO O ""1|“i RN D
Map o OO 0 T =
' |00 0 717301 -‘n*m 5
|0 0O O R 5 1|
Place lDoo 0 BENEFE
v o oo 0 i
Route jooo 0
i |0 00 0
I O 0 0O 0
: 0Co0 0
Bitstream 000 0
|0 OO 0
|0 O O

16

Modern FPGA Development

for (int i = 0; i < SIZE; i++){
c[i] = a[i] * b[i];

}

High-level-Synthesis

Synthesize

Place
v

Route
v

17

for (int 1 = 0; 1 < SIZE;
c[i] = a[i] * b[1];

Execution on CPU
e Series of instructions

loop:
1d %a Sa(%1i)
1d %b $Sb(%1)

gCc = %a * %
st $c(%1i) %c
21 = %1 + 1

branch i<SIZE: loop

Execution on CPU vs on FPGA

i++){

Execution on FPGA
e Spatial data path + control

Eld Sbh(%1i)

1d Sa(%1i)

[y
[mp |
[y
[y R
oo

)
L ¥]
Y]

enable

0 O
0 O
0O
0 0
0 0
0 0O
O0Qg
OO

18

Pipelining

e Use functional units every cycle

¢ [nitiation intervall Il
— describes pipeline fill rate

O O
O O

oo

oooogood
I s

oOooooOomoog
oooogood

oooog
e o R

19

High Level Design Goals

use (expensive) arithmetic units (almost) every cycle v

have scaling designs up to resource or bandwidth limits

¢ This loop may use
— 2 memory blocks for inputs
— 1 DSP for multiplication
— 1 memory block for output
— 280 logic cells for counter and control

e Could create 3907 instances of this block
enable — critical resource: 11721 memory blocks / 3

e or 3906 different blocks of this size
® Or...

0
0
0

O
O
;
m;
O
O
O
O

Coooogooo

20

OpenCL Overview

OpenCL Standard and Platform Model

e Host API and kernel language OpenCL C

compile, compile/
link synthesize

Accelerator
Mem Mem

e OpenCL platform model

Accelerator

e FPGA platforms Mem

— OpenCL 1.0 standard + selected features

https://www.khronos.org/registry/OpenCL/

22

Host Code

Detect a platform (= runtime library, driver here)
Detect devices
Allocate devices (= create context)

Create and build program (on FPGA platforms = load and configure bitstreams)
Create kernel objects
Create command queues

Allocate device memory
Transfer data

Setup kernel arguments
Call kernels
Synchronize

23

Kernel Code

e Specify accelerator functionality in C syntax

e Special language features
— function qualifier (__kernel)

— vector data types and operations
— address space qualifiers

¢ NDRangeKernel concept

— express data parallel execution of work items and work groups
— get global id

— get local id

— supported in FPGA platforms, but often not the most efficient method

24

Used Intel OpenCL Platform

Intel FPGA SDK for OpenCL 18.1.1

https://www.intel.com/content/www/us/en/programmable/products/design-
software/embedded-software-developers/opencl/support.htmi

— Release Notes

— Getting Started Guide

- Programming Guide

— Best Practices Guide

— Download the version specific PDFs!

Target board: Bittware 520N

Target FPGA: Intel Stratix 10 GX 2800
- 933120 ALMs
- 11721 M20k memory blocks (20kb each)
— 5760 DSP blocks, 1x 32 bit IEEE 754 SP floating-point or 2x 18x19 multipiers

25

https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html

Used Xilinx OpenCL Platform

Xilinx SDx 2018.3 SDAccel
https://www.xilinx.com/html docs/xilinx2018 3/sdaccel doc/index.html

https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html#documentation

— Release Notes, Installation, and Licensing Guide

— Environment User Guide

— SDAccel Environment Programmers Guide

— SDAccel Environment Profiling and Optimization Guide
— SDx Pragma Reference Guide

— Download the version specific PDFs!

Target board: Alpha Data ADM-PCIE-8k5

Target FPGA: Xilinx Kintex Ultrascale KU115-2
— 663360 CLB LUTs
- 2160 BRAM blocks, 36kb each
— 5520 DSP slices, 27x18 multipliers

26

https://www.xilinx.com/html_docs/xilinx2018_3/sdaccel_doc/index.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

Note on Xilinx Tool Scope

e SDx combines GUI tool and command line compiler for

- SoCs (Zynq) and discrete target platforms (PCle)
= SoCs
— enables shared memory and CPU-FPGA interactions beyond OpenCL platform model

— uses SDSoC license

= discrete platforms
— use BSP following OpenCL platform model
— use SDAccel license

— OpenCL and C/C++ kernel specification

= OpenCL
— attributes can be used to guide high-level synthesis step

= C/C++
— HLS pragmas are used to guide high-level synthesis step (more available)

— fixed kernel interface for discrete target platforms
e Scope in this talk: discrete target platforms with OpenCL

27

Overview FPGAs and Goals
OpenCL Overview

Example 1: Vector Scale
— compilation

- reports

— performance analysis

Vector Scale Variations
— automatic unrolling

Example 2: SAXPY

— blockwise design pattern
Outer Loop Pipelining
Streaming Kernels

Outline Part 1

28

Example 1: vector scale

Vector Scale Single-Work Item Kernel

e Examples and essential reports of both tools available at
https://github.com/kenter/OpenCL-FPGA-examples

__kernel

void vscale(

__global floatlé *restrict x,
__global floatlé *restrict vy,
const float a,

const int sizel6)

{
vscale:
for (int i=0; i<sizel6; i++){
yl[i] = x[1i]*a;
}

30

https://github.com/kenter/OpenCL-FPGA-examples

Pipelining: Expectation

__kernel

void vscale(

__global float8 *restrict x, ““““
__global float8 *restrict y,

const. £loat a, U
const int size8)

: NI A
JURRIATA
for(int 1=0; i<size8; 1i++){ ““““

y[i] = x[i]*a;
}

31

Compiling with Intel FPGA SDK for OpenCL

* aoc -rtl -report -v -board=p520 max sg2801 -fp-relaxed -fpc
device/vscalel vec.cl

32

Intel Report (1) Summary

e reports/report.html

e Summary
— 1 Single work-item kernel
— high resource includes BSP

33

Intel Report (2) Loop Analysis

e Loop analysis

B “loop iteration
=1

[1I=3 in case of memory stall?

34

Intel Report (3) System viewer

e System viewer
— selecting the loop denoted as vsacle.B2

35

Pipeline Following System Viewer

e Tooltip or details pane reveals more details on individual nodes 00D ICration

T ““““““““
IIIIIIII
e deep pipeline with Il =1 and latency = 656
— stallable by memory interface

e important: wide, burst-coalesced loads / stores

Intel Report (4) Area Analysis

e 16 DSPs for 16 float multiplications

37

Design Review (1)

use (expensive) arithmetic units (almost) every cycle

have scaling designs up to resource or bandwidth limits

Initiation Intervall Il = 1
Latency L = 656

Iterations N

Timein CyclesC=NxIl +L

10

100
1000
10000
100000

666
756
1656
10656
100656

1.5%
13.2%
60.4%
93.8%
99.3%

38

Design Review (2)

use (expensive) arithmetic units (almost) every cycle v

have scaling designs up to resource or bandwidth limits

e Read and write 16 floats (32 bit) per cycle
- 2x512 bit = 2 x 64 byte per cycle
e Peak bandwidth of board
— 4 x (64+8) bit x 2400 MHz (physical interface)
— 4 x 512 bit x 300 MHz (OpenCL interface)
— can unroll 2x more or have 2 compute units
e Kernel can run at > 300 MHz (350-400 MHz for this type of simple kernel)
— 2x unrolled version mildly bandwidth limited
¢ Main problem: low arithmetic intensity
— only 16 of 5760 DSPs used - 0.28% utilization — 0.55% with another 2x unrolling

39

Compiling with Xilinx SDx (SDAccel)

e xocc -g -R 2 -s --platform=alpha-data adm-pcie-8k5 dynamic 5 0
—--memory port data width all:512 -c device/vscalel vec.cl -o
vscalel vec.xo

40

Xilinx Report (1) Vivado HLS Log

Vivado HLS log

Similar 512 bit burst loads / stores

=1
Depth = 10 vs. Latency = 656 in Intel Design

— different terminology, different treatment of off-chip memory latency
— latency is still there (will see in next example) — estimate of loop efficiency harder

41

Xilinx Report (2) System Estimate

System estimate

3 DSPs (+ some logic) per MUL
— need to combine 27x18 multipliers
— Vivado HLS provides some control over balance between DSPs and logic
— SDx with OpenCL inputs not directly
— short multiplications can be done with single DSP

42

Vector Scale Summary

e 2 very similar designs

¢ Found pipelining in reports

e Found 512 bit wide burst-coalesced loads / stores in reports

e Found 16 parallel floating point MULs indirectly in resource estimate

use (expensive) arithmetic units (almost) every cycle v

have scaling designs up to resource or bandwidth limits v

¢ |t’s much easier to reach bandwidth limits than compute resource limits

43

Vector Scale Variations

Vector Scale with Unrolling

__kernel

void vscale(

__global float *restrict x,
__global float *restrict y,
const float a,

const int size)

{ More typical alternative for
attribute((opencl_unroll_hint (16))) Intel Comp”er

for(int 1=0; i<size; it++){ #pragma unroll 16
yl[i] = x[1]*a;

}

e https://github.com/kenter/OpenCL-FPGA-examples -> vscale2_u.cl
— report files in reportintel and reportXilinx
— What has changed in contrast to vscalel_vec (throughput, resources, ...)?

45

https://github.com/kenter/OpenCL-FPGA-examples

o Intel Report: Area Analysis

new

e Same functionality, increased resources, predication for loop epilogue

46

Xilinx Report

¢ Unroll hint ignored
- Xilinx compiler doesn’t generate automatic epilogues
— no explicit message
— area report reveals it

- and pipelining result?

was 10 before!

- memory interface width doesn’t fit

47

Lessons

e When code pattern doesn’t fit
» Attributes and pragmas ignored by compilers

¢ When code pattern fits

» Attributes and pragmas often not needed
— _ attribute ((xcl pipeline loop(l)))
— #pragma 11 <desired initiation interval>

« Xilinx compiler doesn’t generate automatic epilogues

48

Vector Scale with simpler Unrolling

__kernel

volid vscale(

__global float *restrict x,

__global float *restrict y,

const float a,

const int size)

{
// attention, functionality only
// identical if size is multiple of 16
const int sizel6 = size / 16;
__attribute ((opencl unroll hint(16)))
for(int 1i=0; i<sizel6*16; i++){

y[i] = x[1i]*a;

}

49

Unrolled Vector Scale with Epilogue

__kernel
volid vscale(

__global float *restrict x,
__global float *restrict y,
const float a,
const int size)

{

const int sizel6 = size / 16;

Egr(int 1=0; 1i<sizel6*16;
y[i] = x[1]*a;

}

attribute ((opencl unroll hint(16)))

i++){

const int rest = size - sizel6;

for(int i=sizel6*16; i<sizel6*1l6+rest;

Notes:

- logic resource overhead

- simplify iteration expressions

- try predication

- tradeoff between portability
and performance!

i++){

y[i] = x[i]*a;

}

50

Overview FPGAs and Goals
OpenCL Overview

Example 1: Vector Scale
— compilation

- reports

— performance analysis

Vector Scale Variations
— automatic unrolling

Example 2: SAXPY

— blockwise design pattern
Outer Loop Pipelining
Streaming Kernels

Outline Part 1

51

Example 2: SAXPY

SAXPY

e Level 1 BLAS routine (single precision a times x plus y)

__kernel

void SAXPY (

__global const float *restrict x,
__global float *restrict y,

const int a,

const int size)

{

Differences to previous example
« Uses y as input and output
 2loads + 1 store

for (int i=0; i<size; i++)
y[i] = a*x[1] + y[i];

e https://github.com/kenter/OpenCL-FPGA-examples -> SAXPY1.cl
— report files in reportintel and reportXilinx
— How does pipelining work out here?

53

https://github.com/kenter/OpenCL-FPGA-examples

Xilinx Report

e Xilinx compiler generates at most 2 concurrent bursts
e More global memory access will compete for ‘gmem’ port of memory controller

54

Design Pattern: Blockwise Read-Modify-Write

e Data without address space qualifier goes to __local memory (on chip BRAM)

#define BLOCK_SIZE 1024 {

__kernel

void SAXPY (
__global float *rest
__global float *r
const int a,con

rict vy,
int size)

for (1 1i=0; i<size;

float local x[BLOCK_SIZE];
float local y[BLOCK_SIZE];
__attribute ((opencl unroll hint(16)))
for(int j=0; J<BLOCK SIZE; j++){

local x[]J] = x[1+]];
}
__attribute ((opencl unroll hint(16)))
for(int j=0; J<BLOCK SIZE; j++){

local y[j] = y[i+]];
}
__attribute ((opencl unroll hint(16)))
for (int j=0; Jj<BLOCK SIZE; j++){

v[Jj] = a*local x[j] + local y[]];
}

55

Xilinx Reports and Performance Model

Xilinx Pipelining B _looo iteration 2

3 pipelined loops inside sequential outer loop
Per outer loop iteration
— Time in Cycles C = ||||||||||||||||

= Nxll(Loop 1.1) + L(Loop 1.1) +

= N x ll(Loop 1.2) + L(Loop 1.2) +

= N x ll(Loop 1.3) + L(Loop 1.3)
=1024 + 3+ 1024 + 3 + 1024 + 21 "“““
— Asymptotically N x 3

Still much better than Il 151 and no bursts

Intel SAXPY: the Good...

¢ No fixed ‘ports’ on global memory

e (Can sustain multiple burst transfers concurrently
— see later case study on efficiency

e Original SAXYP implementation efficiently pipelined

57

Intel SAXPY Blockwise: the (not so) Bad...

¢ In this example: blockwise design for portability

e General reasons for blockwise designs
— data reuse within block
— reordering / indirect / irregular data access

58

Intel Serial Execution (1)

¢ Technically the outer loop is pipelined, check aocl-best-practices-guide for details

59

Intel Serial Execution (2)

¢ Technically the outer loop is pipelined, check aocl-best-practices-guide for details

60

Intel SAXPY Blockwise: the (not so) Bad... Performance

-rommmﬁ ola

e 3 pipelined loops inside serial execution outer loop
e Per outer loop iteration

— Time in Cycles C = | |||
= N x ll(Loop 1.1) + L(Loop 1.1) +

= N x ll(Loop 1.2) + L(Loop 1.2) +

= N x ll(Loop 1.3) + L(Loop 1.3)
=1024 + 244 + 1024 + 244 + 1024 + 79

— Asymptotically N x 3 ||||||||||||||||
e Asymptotically same throughput as Xilinx design ||||||||||||||||

61

Intel SAXPY Blockwise: the (slightly) Ugly

¢ Additional memory resources are allocated for outer loop pipelining

e minor overhead in this case
e can be modified

— #pragma max_concurrency 1

62

Lessons from SAXPY

¢ Xilinx designs suffer from competition on ‘gmem’ ports
— next slide: brief look at Intel LSUs

e Blockwise designs can involve overheads like 3 x
— will introduce streaming kernels as broadly applicable pattern to overcome this
— sometimes the solution is simpler

¢ Intel compiler replicates local memories for outer loop pipelining
- will look at example without ‘serial execution’

63

Intel LSUs

X

e | SU: Load Store Unit

— initiate burst transfer to local buffer
- feed kernel with data from local buffer

e Linear buffer or cache

X
— automatic decision, mostly works well ||||||||
|||i||||

LSU - DDR memory kernel - LSU
64

Lessons from SAXPY

¢ Xilinx designs suffer from competition on ‘gmem’ ports
— next slide: brief look at Intel LSUs v

e Blockwise designs can involve overheads like 3 x
— will introduce streaming kernels as broadly applicable pattern to overcome this
— sometimes the solution is simpler

¢ Intel compiler replicates local memories for outer loop pipelining
- will look at example without ‘serial execution’

65

Outer Loop Pipelining

Resolving Serial Execution (1)

e Review reason for serial execution

67

Resolving Serial Execution (2)

¢ Tell compiler that blocks are independent
— #pragma ivdep

68

Execution flow with Outer Loop Pipelining
—mm_

(i i

il (i ||||||||IIIIIIII
Il Il

before

i ||||||||““““ ||||||||““““““““ %9

Outer Loop Pipelining Performance

e Asymptotically all functional units filled in every cycle

e Pipeline takes long to fill
- recap from earlier example

10 666 1.5%
100 756 13.2%
1000 1656 60.4%

10000 10656 93.8%
100000 100656 99.3%

- now similar efficiency considerations apply to inner and outer loops

— e.g. N inner = N outer = 1000
= efficiency = 0.604 * 0.604 = 0.365 -> 36.5%
— in practice, latency of outer loop is much higher!

70

Intel Outer Loop Pipelining Summary

e Very powerful tool
— this example: constant and identical trip counts of inner loops
— successfully tested: different trip counts of inner loops based on runtime arguments
— works also for deeper nesting levels

e Memory replication can be very costly

— resource balance: ~2 block RAMs for 1 DSP
— replication can easily lead to 3-5 x more block RAM usage

7

Can request pipelining in one outer loop (or function)
___attribute ((xcl dataflow))

Generally: less flexible than Intel counterpart
In this example: doesn’t overcome ‘gmem’ conflict

Xilinx Counterpart

72

Streaming Kernels

Task-level Parallelism

use (expensive) arithmetic units (almost) every cycle

have scaling designs up to resource or bandwidth limits

Scaling option: add more different tasks
Advantage: may lead to better balanced resource mix

Key goals
— execute tasks concurrently

- forward reused data on chip from one task to the next
- FPGA architecture: wires, FIFO buffers

OpenCL 2.0 feature: pipe

74

OpenCL FPGA Tool Adaptions of Pipes

e OpenCL 2.0 pipe
— dynamic allocation from host code
— CPUs and GPUs don’t have kernel-to-kernel wires, use shared memory
— default: non blocking (polling)

¢ Intel FPGA adaptation

— introduce name channel

— #pragma OPENCL EXTENSION cl intel channels : enable
— require static instantiation in .cl file

— allow attribute ((depth(N)))

— default: blocking

- less efficient, more standard conform pipes available

e Xilinx adaptation
— require static instantiation in .cl file
— require attribute ((xcl reqd pipe depth(N))) N in [16,32,64,..32768]
— add blocking mode (and recommend using it)

75

Header File for Portable FPGA Pipes

e Use blocking semantics by default

76

Pipes in SAXPY Streaming Kernel

#include "macros.h"

PIPE float p vy __kernel

. . void SAXPY (
?Egttifbute__((xcl_reqd_plpe_depth __global const floatl6é *restrict x,

__global floatlé *restrict y,
const int a,

kernel ! .
— const 1nt sizelé6

void ready ()
__global floatlé *restrict y,

. . {
t t 16 : : : : :
(;ons 1nt size for (int i=0; i<sizel6; i++){
) floatl6 y in;

PIPE READ(p vy, y 1in);

for (int i=0; i<sizel6; i++){ . : :
yl1] = a*xX[1] + y_1n;

floatl6 y in = y[i];)
PIPE WRITE(p VY, y_in)

77

SAXPY Streaming Result

e Xilinx (and Intel) design with 2 overlapping kernels with Il =1 loops

78

Streaming Kernel Summary

¢ Pipes for task-level parallelism

¢ Decoupling with pipes can also resolve other pipelining obstacles or kernel stalls
— here: global memory interface restrictions for Xilinx

e Note on resources
— visible resource utilization low
— but pipes need wires - can prohibit successful routing
= rule of thumb 512 bit pipes (like memory interface) are fine
= much wider pipes cause problems
e Note on host code
— OpenCL command queues are sequential by default
— use multiple command queues for concurrent kernel execution
— Xilinx only alternative: out-of-order command queue

79

Conclusion Part 1

Overview FPGAs and Goals
OpenCL Overview

Example 1: Vector Scale
— compilation

- reports

— performance analysis

Vector Scale Variations
— automatic unrolling

Example 2: SAXPY

— blockwise design pattern
Outer Loop Pipelining
Streaming Kernels

Outline Part 1

81

e Covered concepts

Pipelining

Unrolling / Vectorization
Local Memory
Blockwise operations
Outer loop pipelining
Streaming

e Other important concepts

Local memory layout
Loop coalescing
Reductions

Shift Registers
Latency hiding

Concept Summary

82

General Remarks

Intel and Xilinx OpenCL compilers have mostly improved over the last 3+ years
- Intel removed support for variadic macros

New FPGA architectures always pose challenges
— Xilinx introduction of super logic regions (SLRs) — seems well resolved now
— Xilinx introduction of UltraRAM - unknown status to me

— Intel Stratix 10 HyperFlex
= higher clock frequencies partially realized already
» tools have introduced much higher latencies
» blocking channels discouraged
- next challenge for both: high bandwidth memory (HMB)
= 32 x 512 bit memory interfaces?

83

Part 2
Vendor Matrix Multiplications
Complex Design Examples

Simple, yet Efficient Matrix
Multiplication Designs with
OpenCL

Vendor Example Resources

Intel FPGA

e https://www.intel.com/content/www/us/en/programmable/products/design-
software/embedded-software-developers/opencl/support.html#design-examples
— examples driven by application scenario, pargmatic combination of concepts
— each example optimized for peak performance on one target device

Xilinx
e https://github.com/Xilinx/SDAccel Examples

— focus on presenting one or few concepts in working example
— most examples (getting started group) not optimized to fully utilize device

https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html
https://github.com/Xilinx/SDAccel_Examples

C=AxB

Overall data used: 3 x N*2
Computations (MAC) per element: N
Overall computations: N3

Peak arithmetic intensity: N

Matrix Multiplication

Tutorial Examples for Matrix Multiplication

Intel FPGA

e https://www.intel.com/content/www/us/en/programmable/support/support-
resources/design-examples/design-software/opencl/matrix-multiplication.html

e Matrix Multiplication with ND range kernel
— 64x64 tiles, up to 16x64 MAC operations per cycle

Xilinx

e https://github.com/Xilinx/SDAccel Examples/tree/master/getting started/kernel o
pt/systolic_array ocl

e Matrix Multiplication with systolic array
— integer operations

Tutorial copies

e https://github.com/kenter/OpenCL-FPGA-examples

— matrix_mult.cl
- mmult.cl

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/matrix-multiplication.html
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/kernel_opt/systolic_array_ocl
https://github.com/kenter/OpenCL-FPGA-examples

Intel FPGA matrix mul

Intel matrix mult.cl

¢ NDRange kernel

¢ Read code inside kernel from perspective of one work item
e |Ds are used to determine element positions

Tiling in Work Groups and Items

e Work item computes result element .

* Work group computes result tile .

X

® Process inputs per tile .- =

e https://github.com/kenter/OpenCL-FPGA-examples -> matrix_mult.cl
— additional reports in reportintel
— Throughput of this design?

https://github.com/kenter/OpenCL-FPGA-examples

Allocation of Local Memory

Input Tiles

Where’s the output tile?

Only output value work item
Input tiles are shared in group (_ local)
Output elements are work-item private (still 1ocal memory space)

10

Two loops

Loop over input tiles

Note: need to synchronize between work items after loading tiles .

Loop over tile vectors

Fully unrolled: 64 MACs per cycle

11

SIMD Work Items

e NDRange kernel feature SIMD Work Iltems (max 16)

* Process multiple work items per cycle .-
¢ Need more elements of B concurrently

12

Resource Usage of Banking

e Local buffer size increased by 16 banks

13

Intel MM Design Evaluation

64 (unrolled inner loop) x 16 (SIMD work items) MAC operations per cycle

Balanced resource usage (good fit for Arria 10 GX1150)
- ~1024 DSPs, ~1350 BRAMs (832 for local B tile)

Performance considerations, per pair of input tiles
— calculate 64x64 work items, 16 in parallel -> 64x64/16 = 64x4 = 256 cycles per pair of input tiles
— need to load 2 tiles a 64x64 floats (eventually store 1 tile a 64x64 floats)

= 2 X 64x64 x 32 bit = 2 x 128kb per tile
» have 256 cycles: 2 x 512 bit per cycle - perfect match for memory interface

Scaling considerations (Stratix 10)
- higher compute to bandwidth ratio needs larger tiles

— scaling problems for banked B tiles and registers for work item state
(running sum and more)

14

e Covered concepts

Pipelining (different here: NDRange)

Unrolling / Vectorization

Local Memory

Blockwise operations

Outer loop pipelining (different here: work groups)
Streaming

e Other important concepts

Local memory layout
Loop coalescing
Reductions

Shift Registers
Latency hiding

Concepts Used

15

Xilinx mmulit

Xilinx mmult.cl

e Educational example on technique systolic array

e https://github.com/kenter/OpenCL-FPGA-examples -> mmult.cl
— additional reports in reportXilinx
— How many pipelined loops?

¢ Blockwise processing
— 2read blocks, 1 compute block, 1 write back block

17

https://github.com/kenter/OpenCL-FPGA-examples

Xilinx mmult.cl Snippets (1)

e Array partitioning for parallel access
— in first dimension
- in second dimension
— in all dimensions

18

Xilinx mmult.cl Snippets (2)

e Quter loop pipelined

e what about the two loops inside?
— again, code pattern determines further transformations

19

Xilinx mmult.cl Snippets (3)

e 2D loop unrolling
- simple form of systolic array

20

Xilinx mmult.cl Snippets (4)

e code inside loop
— PEs get data directly from input array

[

accumulation in 1 cycle required

21

Xilinx mmult.cl Results + Limitations

e Given example with 12 x 12 = 144 parallel operations

e Single cycle accumulation not possible for floating point

¢ Need to accumulate into several registers (~latency) and later sum up

22

Concepts Used

e Covered concepts
— Pipelining
— Unrolling / Vectorization (different here: systolic array, unrolling in 2 dimensions)
- Local Memory
— Blockwise operations
— Outer loop pipelining
— Streaming

e Other important concepts
- Local memory layout
- Loop coalescing
— Reductions
— Shift Registers
- Latency hiding

23

Success Stories
Complex Design Examples

Electrical Engneering: Nanophotonics Simulati.ons

in
e FDTD stencil solver for Maxwell

equations
- regular 2D grid
— acceleration with FPGAs

— generalization of OpenCL design for Xilinx
and Intel FPGA compilers

e Kenter et. al: Flexible FPGA design for FDTD using
OpenCL. Proc. Int. Conf. on Field Programmable Logic
and Applications (FPL). Sep. 2017.

F I

e Discontinuous Galerkin solver for
Maxwell equations
— regular opeartions on unstructured grids
— acceleration mit FPGAs

— generalization in domain specific
language (DSL) and compiler

e Kenter et. al: OpenCL-based FPGA design to accelerate
the nodal Discontinuous Galerkin method for unstructured
meshes. Proc. Int. Symp. on Field-Programmable Custom
Computing Machines (FCCM). Apr. 2018.

26

Thank you!
Questions?

